We review herein the synthesis and investigation of iron(II) coordination compounds with 1,2,4‐triazoles or tris(pyrazol‐1‐yl)methanes as ligands. Both groups of complexes demonstrate thermally induced spin crossover accompanied by thermochromism [pink (magenta) ↔ white color change]. Factors that influence the nature and temperature of the spin crossover are discussed.
The radical anion salt [Fe{HC(pz)3}2](TCNQ)3 demonstrates conductivity and spin-crossover (SCO) transition associated with Fe(II) complex cation subsystem. It was synthesized and structurally characterized at temperatures 100, 300, 400, and 450 K. The compound demonstrates unusual for 7,7,8,8,-tetracyanoquinodimethane (TCNQ)-based salts quasi-two-dimensional conductivity. Pronounced changes of the in-plane direct-current resistivity and intensity of the electron paramagnetic resonance (EPR) signal, originated from TCNQ subsystem, precede the SCO transition at the midpoint T* = 445 K. The boltzmannian growth of the total magnetic response and structural changes in the vicinity of T* uniquely show that half [Fe{HC(pz)3}2] cations exist in high-spin state. Robust broadening of the EPR signal triggered by the SCO transition is interpreted in terms of cross relaxation between the TCNQ and Fe(II) spin subsystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.