It was shown using enzyme-linked immunosorbent assay (ELISA) that titers of antibodies against human myelin basic protein (hMBP) in systemic lupus erythematosus (SLE) patients 4.2-fold higher than in healthy individuals, but 2.1-fold lower than in patients with multiple sclerosis (MS). Approximately 86% electrophoretically and immunologically homogeneous SLE immunoglobulin Gs (IgGs) purified using several affinity resins including Sepharose with immobilized hMBP specifically hydrolyze only hMBP but not many other tested proteins. Several rigid criteria were applied to show that the hMBP-hydrolyzing activity is an intrinsic property of SLE IgGs but not from healthy donors. In contrast to MS IgGs, abzymes from SLE patients are more sensitive to ethylenediaminetetraacetic acid and less sensitive to specific inhibitors of serine-like proteases. We present the first evidence demonstrating a significant diversity of different fractions of SLE IgGs in their affinity for hMBP-Sepharose, the ability of IgGs to hydrolyze hMBP at different optimal pHs (5-10) and be activated by different metal ions: Ca(2+) > Mg(2+) ≥ Co(2+) ≥ Fe(2+) ≥ Ni(2+) ≥ Zn(2+) ≥ Cu(2+) ≥ Mn(2+) . Combinations of Ca(2+) + Mg(2+) and Ca(2+) + Co(2) lead to a significant increase in the antibody proteolytic activity as compared with Ca(2+) , Co(2+) , or Mg(2+) ions taken separately. Our findings suggest that the immune systems of individual SLE similar to MS patients can generate a variety of anti-hMBP abzymes with different catalytic properties, which can attack hMBP of myelin-proteolipid shell of axons and play an important role in pathogenesis not only MS but also SLE patients.
Human myelin basic protein (hMBP)-hydrolyzing activity was recently shown to be an intrinsic property of antibodies from systemic lupus erythematosus (SLE) patients. Here, we present the first evidence demonstrating a significant diversity of different fractions of polyclonal IgGs (pIgGs) from SLE patients in their affinity for hMBP and in the ability of pIgGs to hydrolyze hMBP at different optimal pH values (5.3-9.5); the pH profiles of IgG1, IgG2, IgG3 and IgG4 were unique. IgGs containing the λ-type of light chains demonstrated higher relative activities (RAs) in the hydrolysis of hMBP and its oligopeptides (OPs) than κ-IgGs. IgGs of all four subclasses were catalytically active; their RAs in the hydrolysis of hMBP increased in the following order: IgG4 < IgG2 < IgG3 < IgG1. Metal-dependent proteolytic activity of λ-IgG, IgG1, IgG2 and IgG3 was higher than their serine protease-like activity, while these activities of κ-IgG were comparable. Phenylmethylsulfonylfluoride had almost no effect on the activity of IgG4, while EDTA significantly suppressed its activity. The RAs of λ-IgG in the hydrolysis of four OPs corresponding to different cleavage sites of hMBP were remarkably higher than those for κ-IgGs. IgG1-IgG4 demonstrated different RAs and patterns of hydrolysis of these four OPs. Although combination of Ca²⁺ plus Mg²⁺ was the best in the activation of IgG1 and IgG2, IgG3 and IgG4 demonstrated the highest activity in the presence of Ca²⁺ plus Co²⁺. The ratio of the RAs of λ-IgG, κ-IgG and IgG1-IgG4 preparations in all analyzed cases was individual for each preparation.
IgGs from patients with multiple sclerosis and systemic lupus erythematosus (SLE) purified on MBP-Sepharose in contrast to canonical proteases hydrolyze effectively only myelin basic protein (MBP), but not many other tested proteins. Here we have shown for the first time that anti-MBP SLE IgGs hydrolyze nonspecific tri-and tetrapeptides with an extreme low efficiency and cannot effectively hydrolyze longer 20-mer nonspecific oligopeptides corresponding to antigenic determinants (AGDs) of HIV-1 integrase. At the same time, anti-MBP SLE IgGs efficiently hydrolyze oligopeptides corresponding to AGDs of MBP. All sites of IgG-mediated proteolysis of 21-and 25-mer encephalytogenic oligopeptides corresponding to two known AGDs of MBP were found by a combination of reverse-phase chromatography, TLC, and MALDI spectrometry. Several clustered major, moderate, and minor sites of cleavage were revealed in the case of 21-and 25-mer oligopeptides. The active sites of anti-MBP abzymes are localised on their light chains, while heavy chains are responsible for the affinity of protein substrates. Interactions of intact globular proteins with both light and heavy chains of abzymes provide high affinity to MBP and specificity of this protein hydrolysis. The affinity of anti-MBP abzymes for intact MBP is approximately 1000-fold higher than for the oligopeptides. The data suggest that all oligopeptides interact mainly with the light chains of different monoclonal abzymes of total pool of IgGs, which possesses a lower affinity for substrates, and therefore, depending on the oligopeptide sequences, their hydrolysis may be less specific than globular protein and can occur in several sites.
IgGs from patients with multiple sclerosis and systemic lupus erythematosus (SLE) purified on MBP-Sepharose in contrast to canonical proteases hydrolyze effectively only myelin basic protein (MBP), but not many other tested proteins. Here we have shown for the first time that anti-MBP SLE IgGs hydrolyze nonspecific tri- and tetrapeptides with an extreme low efficiency and cannot effectively hydrolyze longer 20-mer nonspecific oligopeptides corresponding to antigenic determinants (AGDs) of HIV-1 integrase. At the same time, anti-MBP SLE IgGs efficiently hydrolyze oligopeptides corresponding to AGDs of MBP. All sites of IgG-mediated proteolysis of 21-and 25-mer encephalytogenic oligopeptides corresponding to two known AGDs of MBP were found by a combination of reverse-phase chromatography, TLC, and MALDI spectrometry. Several clustered major, moderate, and minor sites of cleavage were revealed in the case of 21- and 25-mer oligopeptides. The active sites of anti-MBP abzymes are localised on their light chains, while heavy chains are responsible for the affinity of protein substrates. Interactions of intact globular proteins with both light and heavy chains of abzymes provide high affinity to MBP and specificity of this protein hydrolysis. The affinity of anti-MBP abzymes for intact MBP is approximately 1000-fold higher than for the oligopeptides. The data suggest that all oligopeptides interact mainly with the light chains of different monoclonal abzymes of total pool of IgGs, which possesses a lower affinity for substrates, and therefore, depending on the oligopeptide sequences, their hydrolysis may be less specific than globular protein and can occur in several sites.
Systemic lupus erythematosus (SLE) is an immune-mediated disease that is responsive to suppression or modulation of the immune system. Patients with SLE who experience persistent multiorgan dysfunction, despite standard doses of intravenous cyclophosphamide (Cy), represent a subset of patients at high risk of early death. We investigated the efficacy and toxicity of high-dose immunosuppression and autologous hematopoietic stem cell transplantation (SCT) to treat such patients. Six patients (all female, age 15-29 years) with severe refractory SLE were enrolled in the clinic of our institution from 1998 to 2003. All patients were seriously ill, with SLE disease activity indices (SLEDAI) of 6-30, including two cases with central nervous system lupus, one case with lung vasculitis, and three cases with nephritis and nephrotic syndrome. All patients were registered in the European Group for Blood and Marrow Transplantation (EBMT)/European League Against Rheumatism (EULAR) database. Previous immunosuppression included pulse Cy intravenous, prednisolone (standard doses and pulse therapy), oral Cy and azathioprine, with little or no effect on disease progression. Autologous hemopoietic stem cells were collected from bone marrow (n = 4) or mobilized from peripheral blood with Cy and granulocyte colony-stimulating factor (G-CSF) (n = 2). Pre-transplant conditioning regimens included BEAM +/- ATG (n = 2), melphalan 140 mg/m2 + etoposid 1600 mg/m2 (n = 2) and Cy 200 mg/kg +/- ATG (n = 2). Median time to an absolute neutrophil count (ANC) greater than 0.5 x 10(9)/L and platelet count greater than 50 x 10(9)/L was 13 and 15 days, respectively. Three patients died on days 11, 22 and 63 due to transplant-related complications. The follow-up is now 60 and six months for two patients (complete remission), and 42 months for one other patient (partial response). All patients had experienced multiple and severe episodes of infections pre-SCT and long-term history of corticosteroid therapy (3-14 years). We conclude that achievement of prolonged, corticosteroid-free remissions is a reality. Judicious selection of patients earlier in disease or in remission, but with a high risk of relapse or further progression, will diminish transplantation-related mortality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.