Biological apatites (tooth enamel, bone) and their synthetic analogues were exposed to gamma rays, UV light, or thermal treatment and studied by electron paramagnetic resonance (EPR). The thermal generation of CO2- radicals in synthetic apatite was observed for the first time. It was shown that the experimental EPR spectra of all of the above-mentioned materials are caused by the contribution of two types of CO2- radicals: axial and orthorhombic. The ratio of their concentrations depends on the characteristic energy of the external influence (i.e., the energy of quantum for radiation or kT for thermal treatment) and also on the quality of the initial material (defectiveness). Based on the analysis of EPR spectra recorded immediately after gamma-irradiation, the authors conclude that the main short-lived radical in bioapatites is CO3(3)- . The unified mechanism of CO2- radical formation in hydroxyapatites at different external influences is proposed; the main stages of transformation are CO3(2)- + e --> CO3(3)- --> CO2-, where the electron (e) originates from the ionization of impurities by radiation/temperature.
The atomic structure and surface energies of several low-index surfaces (0001), (11¯00) and (112¯0) of Ti5Si3 in dependence on their termination were calculated by the projector augmented-wave method within the density functional theory. It was revealed that the mixed TiSi-terminated (0001) surface is stable within the wide range of change in the Ti chemical potential. However, the Ti-terminated Ti5Si3(0001) surface is slightly lower in energy in the Ti-rich limit. The oxygen adsorption on the stable Ti5Si3(0001) surface with TiSi termination was also studied. It was shown that the three-fold coordinated F1 position in the center of the triangle formed by surface titanium atoms is the most preferred for oxygen adsorption on the surface. The appearance of silicon as neighbors of oxygen in other considered F-positions leads to a decrease in the adsorption energy. The factors responsible for the increase/decrease in the oxygen adsorption energy in the considered positions on the titanium silicide surface are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.