Perioperative inflammation is proposed to be involved in the pathogenesis of POAF. Therefore, perioperative assessment of CRP, IL-6, IL-8, and IL-10 can help clinicians in terms of predicting and monitoring for POAF.
The aim of this work was to study the effect of molecular hydrogen on oxidative processes in cardiac surgery patients with acquired valve heart disease applied during surgery under cardiopulmonary bypass (CPB). Materials and Methods. The study involved 20 patients (16 men and 4 women) with acquired heart valve disease who were operated on under CPB. Two groups of patients were formed. In group 1 (n=11), anesthesia included inhalations of molecular hydrogen, which was supplied to the breathing circuit of the ventilator at a concentration of 1.5-2.0% immediately after tracheal intubation and throughout the operation. In group 2 (n=9), inhalation of molecular hydrogen was not performed. Blood sampling was taken at 4 stages: immediately after anesthesia induction, before CPB and after its termination, and also one day after the operation. The intensity of the processes of lipid peroxidation was evaluated by the level of diene (DC) and triene (TC) conjugates, Schiff bases (SB). Results. In the patients of group 1, the arterial blood samples showed a decrease in the level of TC and SB, as compared to the first stage of the study, before the initiation of CPB and one day after the operation. An increase in the level of DC and TC was detected after the termination of CPB (p<0.05). In the venous blood samples, an increase in the level of DC was noted before the initiation of CPB, which was restored by the third stage of the study (p<0.05). At the same time, after the termination of CPB, a tendency towards a decrease in TC and SB was observed, which persisted one day after the operation. In the patients of group 2, an increase in the concentration of SB in the arterial blood samples was recorded during the study as compared to the first stage. The level of TC and SB in the venous blood samples increased one day after the operation. Conclusion. Intraoperative inhalation of molecular hydrogen leads to a decrease in the oxidative stress manifestation, it being most pronounced one day after the operation. This suggests that molecular hydrogen can be used in cardiac surgery as an effective and safe antioxidant.
The aim of the study was to evaluate the effectiveness of a new technology for the use of inhaled nitric oxide (NO) for the heart and lung protection during operations with cardiopulmonary bypass (СРВ). Materials and Methods. The study included 90 patients who underwent heart valve surgery and combined procedures under CPB and pharmacological cardioplegia. Three groups were created: group 1 (control, n=30); group 2 (n=30) — NO inhalation (20 ppm) was conducted traditionally, that is, before and after CPB; group 3 (n=30) — NO inhalation was performed using a new technology — during the entire operation, with pulmonary artery perfusion and lung ventilation performed during CPB. Troponin I (cTn I) level, changes in the pulmonary function parameters, and clinical indicators were studied. Results. Statistically significant lower levels of postoperative cTn I were registered in the patients of groups 2 and 3, at the same time, the levels were significantly lower in group 3 compared to group 2. The patients in group 1 (standardized anesthesia protocol) demonstrated an increase in the alveolar-arterial oxygen difference, an increase in intrapulmonary shunting, a decrease in blood oxygenation, and static lung compliance after СРВ. In both cases, NO inhalation retained the values of lung compliance and pulmonary oxygenating function after CPB, and in the patients of group 3, it also significantly reduced intrapulmonary shunting and alveolar-arterial difference after CPB. NO inhalation allowed a statistically significant decrease in the incidence of pulmonary dysfunction, acute respiratory failure, as well as the time of respiratory support in the ICU. Conclusion. The developed technology for the use of inhaled NO in surgery with CPB provides a clinically marked protective effect on the heart and lungs. The effectiveness of the protective action of NO depends on the duration of its administration and is most pronounced when used during the entire operation, including CPB time.
Introduction. Usually, gaseous nitric oxide (NO) is supplied to the patient by inhalation, adding to the inhaled gas mixture during spontaneous breathing, or supplying it to the inspiratory part of the ventilator. It is believed that the main point of its action is the pulmonary vasculature, where it exhibits an expanding effect, thus improving the oxygenation of arterial blood and reducing the pulmonary artery pressure. However, data from recent experimental clinical studies suggest that the addition of NO directly to the gas mixture supplied to the oxygenator makes it possible to systemically deliver NO into the bloodstream and, thereby, reduce the inflammatory response of the whole body caused by the extracorporeal circuit (cardiopulmonary bypass [CPB] or extracorporeal membrane oxygenation [ECMO]). Materials and methods. The search for publications was carried out in electronic databases PubMed, EMBASE. The last search term was December 30, 2020. The search term included the following words: “nitric oxide” and “artificial circulation” or “ECMO”. Only experimental and clinical randomized controlled blinded studies were selected for inclusion in the review. Results. The article analyzes data from recent studies related to the delivery of gaseous NO to the extracorporeal circuit, among which the issues of both NO delivery into the cardiopulmonary bypass line and the systemic and organ effects of nitric oxide delivered to the circuit are considered. The cardioprotective and anti-inflammatory effects of NO supplied to the extracorporeal circulation are considered in detail, as well as its effect on the lungs and kidneys. Conclusions. Further new randomized trials are needed to determine the place of the technology for supplying gaseous nitric oxide to the line of heart-lung machines or ECMO in modern cardiac surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.