A new mineral falgarite, K4(V+4O)3(SO4)5 was discovered at the tract of Kukhi-Malik, Fan-Yagnob coal deposit, ca. 75 km N of Dushanbe, Tajikistan. The new mineral is named after the Falgar, an ancient Sogdian name for an area around the Zeravshan riverhead. Falgarite is a fumarolic mineral formed directly from a gas emitted by a natural underground coal fire. Associated minerals are anhydrite, baryte, molybdite, an unidentified Tl-vanadyl sulfate, K–Mg sulfate and an anhydrous Mg-sulfate. Falgarite forms small isometric or pseudo-octahedral individual crystals (10–60 μm) of turquoise colour and spherical aggregates up to 0.5 mm in diameter. Mohs hardness is ~ 2.5, Dmeas = 2.87(2) and Dcalc = 2.89 g/cm3. Refractive indices are: α = 1.588(3), β(calc.) = 1.600(3) and γ = 1.609(2) (590 nm). In transmitted light falgarite is transparent green with a weak pleochroism. The mineral is non-soluble in H2O and 5% HNO3 at room temperature. Infrared spectra support the absence of H2O and OH–. The chemical composition determined by electron-microprobe analysis is (wt.%): Na2O 0.55, K2O 20.76, Tl2O 1.83, VO2 29.38 and SO3 46.78, total 99.29. The empirical formula (based on 23 O apfu) is: (K3.76Na0.15Tl0.07)Σ3.98V3.02S4.99O23.0. The strongest lines of the powder X-ray diffraction pattern are [d,Å(I,%)(hkl)]: 3.20(70)(202); 3.17(80)024; 3.14(70)$\bar{2}$04; 3.01(50)$\bar{1}$51; and 2.88(100)151. Falgarite is monoclinic, P21/n, a = 8.7209(5), b = 16.1777(6), c = 14.4614(7) Å, β = 106.744(5)°, V = 1953.77(17) Å3, Z = 4 and R1 = 0.05. VO6 octahedra and SO4 tetrahedra link together by sharing corners thus forming a [(VO)3(SO4)5]4– framework. K+, Na+ and Tl+ cations are located in the channels of the framework. The synthetic K4(VO)3(SO4)5 analogue is known.
Shakhdaraite-(Y), ideally ScYNb2O8, is a new mineral from the Leskhozovskaya miarolitic granitic pegmatite at the Shakhdara River, southwestern Pamir (Tajikistan). Shakhdaraite-(Y) occurs mainly as grains from 10 to 150 μm in size in a near-miarolitic pegmatite complex in association with quartz, albite, pyrochlore-microlite, fersmite, and an unnamed Sc-Nb oxide; only one large, single, well-shaped crystal 200 μm long was found in a small cavity with quartz, albite, bertrandite, pyrochlore, and jarosite. Shakhdaraite-(Y) is black to dark-brown, streak is brown. Luster is vitreous semi-metallic. It is brittle with conchoidal fracture. Mohs hardness is 5. VHN100 = 436 kg/mm2. Dcalc. = 5.602 g/cm3. In reflected light, it is light gray and its reflective capacity is moderate to low. Anisotropy is distinct, without color effects. Pleochroism was not observed. Internal reflections are red-brown. Reflectance values were measured in air with SiC as reference material [λ(nm), Rmax, Rmin]: 470, 14.6, 13.9; 546, 14.0, 13.4; 589, 13.9, 13.3; 650, 13.8, 13.1. Electron probe microanalysis (WDS mode, 7 points) gives (wt.%): Nb2O5 50.70; Ta2O5 4.52; TiO2 0.08; WO3 0.79; SnO2 1.54; CaO 1.01; Sc2O3 11.35; MnO 1.38; FeO 0.01; Y2O3 12.00; Ce2O3 0.21; Pr2O3 0.04; Nd2O3 0.27; Sm2O3 0.32; Eu2O3 0.07; Gd2O3 0.86; Tb2O3 0.22; Dy2O3 2.07; Ho2O3 0.29; Er2O3 1.33; Tm2O3 0.35; Yb2O3 2.80; Lu2O3 0.32; PbO 0.24; ThO2 1.90; UO2 3.30, total 97.97. The empirical formula of shakhdaraite-(Y) based on O = 8 apfu (atoms per formula unit) is (Nb1.91Sc0.83Y0.53Ta0.10Mn0.10Ca0.09 Yb0.07U4+0.06Dy0.06Sn0.05Th0.04Er0.03Gd0.02W6+0.02Pb0.01Ce0.01Nd0.01Sm0.01Tb0.01Ho0.01Tm0.01Lu0.01Ti0.01)Σ4.00O8, Z = 2. The simplified formula is Sc(Y,Yb)Nb2O8, where Yb is the dominant lanthanoid. Shakhdaraite-(Y) is monoclinic, space group P2/c, a 9.930(2), b 5.6625(11), c 5.2108(10) Å, β 92.38(3)°, V 292.7(5) Å3, Z = 2. The crystal structure was solved by direct methods [R1 = 0.0269, 878 unique reflections (F > 4σF)]. There are three cation M sites: [6]M(1) = Nb2apfu, [6]M(2) = Sc apfu, and [8]M(3) = Y apfu, ideally M = ScYNb2apfu. The M(1) and M(2) octahedra each form a brookite chain along c. The Y-dominant [8]M(3A) polyhedra form a brookite-like kinked chain, and each M(3A) polyhedron of one brookite-like chain shares two edges with the two M(3A) polyhedra from the adjacent brookite-like chain, thus forming a [Y2O8]10– layer. In the structure of shakhdaraite-(Y), M(1A) and M(2) brookite chains and a layer of [8]-coordinated M(3A) polyhedra alternate along a. Shakhdaraite-(Y) is isostructural with samarskite-(Y), ideally YFe3+Nb2O8. Shakhdaraite-(Y) [Russian Cyrillic: шахдараит-(Y)] is named after its type locality: the valley of the Shakhdara River in the southwest of the Pamir Mountains.
In terrestrial rocks, Br minerals are extremely rare with only nine minerals known where Br is a dominant component. A new arsenite bromide mineral ermakovite, (NH 4 )(As 2 O 3 ) 2 Br, was discovered at the tract of Kukhi-Malik, Fan-Yagnob coal deposit, ca. 75 km N of Dushanbe, Tajikistan. Ermakovite is a fumarolic mineral formed directly from gas from a natural underground coal fire. Associated minerals are sulfur, realgar, amorphous As-sulfides, salammoniac, alacranite,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.