Production of functional food with high levels of selenium (Se) and iodine (I) obtained via plant biofortification shows significant difficulties due to the complex interaction between the two elements. Taking into account the known beneficial effect of silicon (Si) on plant growth and development, single and joint foliar biofortification of chervil plants with potassium iodide (150 mg L−1) and sodium selenate (10 mg L−1) was carried out in a pot experiment with and without Si nanoparticles foliar supplementation. Compared to control plants, nano-Si (14 mg L−1) increased shoot biomass in all treatments: by 4.8 times with Si; by 2.8 times with I + Si; by 5.6 times with Se + Si; by 4.0 times with I + Se + Si. The correspondent increases in root biomass were 4.5, 8.7, 13.3 and 10.0 times, respectively. The growth stimulation effect of Se, I and I + Se treatments resulted in a 2.7, 3.5 and 3.6 times increase for chervil shoots and 1.6, 3.1 and 8.6 times for roots, respectively. Nano-Si improved I biofortification levels by twice, while I and Se enhanced the plant content of each other. All treatments decreased nitrate levels, compared to control, and increased the photopigment accumulation. Improvement of total antioxidant activity and phenolic content was recorded only under the joint application of Se + I + Si. Foliar nano-Si treatment affected other element content in plants: decreased Na+ accumulation in single and joint supplementation with Se and I, restored Fe, Mn and Cr amount compared to the decreased levels recorded in separately Se and I fortified plants and promoted Al accumulation both with or without Se and I biofortification. The results of this research suggest high prospects of foliar nano-Si supply for enhancing both growth and joint I/Se biofortification of chervil.
Bauxite residue, known as red mud, is a by-product of alumina production using the Bayer process. Currently, its total global storage amounts to over 4.6 billion tons, including about 600 million tons in Russia. The total global storage of red mud occupies large areas, leading to environmental damage and increasing environmental risks. Moreover, it contains a significant amount of sodium, which is easily soluble in subsoil water; therefore, a sustainable approach for comprehensive recycling of red mud is necessary. The bauxite residue contains valuable elements, such as aluminum, titanium, and scandium, which can be recovered using liquid media. In recent years, many methods of recovery of these elements from this waste have been proposed. This paper provides a critical review of hydrometallurgical, solvometallurgical, and complex methods for the recovery of valuable components from red mud, namely, aluminum, titanium, sodium, and rare and rare-earth elements. These methods include leaching using alkaline or acid solutions, ionic liquids, and biological organisms, in addition to red mud leaching solutions by extraction and sorption methods. Advantages and disadvantages of these processes in terms of their environmental impact are discussed.
The unique biological properties of A. annua have stimulated the research on its cultivation in different regions of the world. In this study, the effect of the Se and nano-Si supply on the yield, biochemical characteristics and mineral content of A. annua was investigated. Growth stimulation and a significant increase in the antioxidant status were recorded under Se and nano-Si foliar application. A decrease in the number of essential oil components and significant changes in the essential oil amount and composition led to significant phenophase shifts: nano-Si significantly stimulated eucalyptol and artemisia ketone accumulation and decreased germacrene D production, whereas Se demonstrated the opposite effect. A joint Se and nano-Si supply significantly decreased the camphor content and increased artemisia ketone and artemisinin levels by 1.3–1.5 times. Se/Si supplementation affected the macro- and microelements content, causing either a redistribution of leaves/stems elements (Al, Li and Zn) or a significant decrease in Ca, Mg, K, B, Cu, Fe and Mn concentrations in leaves, with no signs in growth inhibition or a decrease in the photosynthetic pigments content. The biofortification of A. annua with Se singly or in combination with nano-Si resulted in the synthesis of products with a Se content of as much as approximately 16% of the daily adequate Se consumption level (ACL) when using 5 g day-1 as a spice, or 36% of ACL when using 50 mL of tea infusion (1:2, v/w). The results indicated a high possibility of Se and nano-Si application toward the regulation of A. annua growth, biochemical characteristics (including essential oil and artemisinin) and mineral content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.