The ubiquitous polyamine spermidine is indispensable for eukaryotic growth and cell proliferation. A conserved vital function of spermidine across eukaryotes is conferred by its aminobutyl group that is transferred to a single lysine in translation factor eIF5A to form the essential hypusine post-translational modification required for cellular translation. In direct contrast, although spermidine is absolutely essential for growth of alpha-proteobacterial plant pathogen Agrobacterium tumefaciens, we have found, by employing a suite of natural polyamines and synthetic methylated spermidine analogues together with spermidine biosynthetic mutants, that it is solely the 1,3-diaminopropane moiety of spermidine that is required for growth. Indeed, any polyamine containing an intact terminal 1,3-diaminopropane moiety can replace spermidine for growth, including the simple diamine 1,3-diaminopropane itself, a paradigm shift in understanding polyamine function in bacteria. We have identified for the first time a spermidine retroconversion activity in bacteria, producing diamine putrescine from triamine spermidine, however, exogenously-supplied tetraamine spermine is resistant to retroconversion. When spermidine levels are pharmacologically decreased, synthesis of spermine from spermidine is induced via the same biosynthetic enzymes, carboxyspermidine dehydrogenase and carboxyspermidine decarboxylase that produce spermidine from putrescine, the first identification of a spermine biosynthetic pathway in bacteria. This also suggests that spermidine represses spermine biosynthesis, but when spermidine levels decrease, it is then converted by carboxyspermidine dehydrogenase and decarboxylase enzymes to spermine, which is resistant to retroconversion and constitutes a sequestered pool of protected 1,3-diaminopropane modules required for growth. We also identify an efficient N-acetylspermidine deacetylase activity, indicative of a sophisticated bacterial polyamine homeostasis system.
The polyamines are organic polycations present at millimolar concentrations in eukaryotic cells where they participate in the regulation of vital cellular functions including proliferation and differentiation. Biological evaluation of rationally designed polyamine analogs is one of the cornerstones of polyamine research. Here we have synthesized and characterized novel C-methylated spermidine analogs, that is, 2-methylspermidine, 3-methylspermidine, and 8-methylspermidine. 3-Methylspermidine was found to be metabolically stable in DU145 cells, while 8-methylspermidine was a substrate for spermidine/spermine N(1)-acetyltransferase (SSAT) and 2-methylspermidine was a substrate for both SSAT and acetylpolyamine oxidase. All the analogs induced the splicing of the productive mRNA splice variant of SSAT, overcame growth arrest induced by 72-h treatment with ornithine decarboxylase (ODC) inhibitor α-difluoromethylornithine, and were transported via the polyamine transporter. Surprisingly, 2-methylspermidine was a weak downregulator of ODC activity in DU145 cells. Our data demonstrates that it is possible to radically alter the biochemical properties of a polyamine analog by changing the position of the methyl group.
The biogenic polyamines, spermine, spermidine (Spd) and putrescine (Put) are present at micro-millimolar concentrations in eukaryotic and prokaryotic cells (many prokaryotes have no spermine), participating in the regulation of cellular proliferation and differentiation. In mammalian cells Put is formed exclusively from L-ornithine by ornithine decarboxylase (ODC) and many potent ODC inhibitors are known. In bacteria, plants, and fungi Put is synthesized also from agmatine, which is formed from L-arginine by arginine decarboxylase (ADC). Here we demonstrate that the isosteric hydroxylamine analogue of agmatine (AO-Agm) is a new and very potent (IC50 3•10−8 M) inhibitor of E. coli ADC. It was almost two orders of magnitude less potent towards E. coli ODC. AO-Agm decreased polyamine pools and inhibited the growth of DU145 prostate cancer cells only at high concentration (1 mM). Growth inhibitory analysis of the Acremonium chrysogenum demonstrated that the wild type (WT) strain synthesized Put only from L-ornithine, while the cephalosporin C high-yielding strain, in which the polyamine pool is increased, could use both ODC and ADC to produce Put. Thus, AO-Agm is an important addition to the set of existing inhibitors of the enzymes of polyamine biosynthesis, and an important instrument for investigating polyamine biochemistry.
Ubiquitous polyamine spermidine is not required for normal planktonic growth of Bacillus subtilis but is essential for robust biofilm formation. However, the structural features of spermidine required for B. subtilis biofilm formation are unknown and so are the molecular mechanisms of spermidine-stimulated biofilm development. We report here that in a spermidine-deficient B. subtilis mutant, the structural analogue norspermidine, but not homospermidine, restored biofilm formation. Intracellular biosynthesis of another spermidine analogue, aminopropylcadaverine, from exogenously supplied homoagmatine also restored biofilm formation. The differential ability of C-methylated spermidine analogues to functionally replace spermidine in biofilm formation indicated that the aminopropyl moiety of spermidine is more sensitive to C-methylation, which it is essential for biofilm formation, but that the length and symmetry of the molecule is not critical. Transcriptomic analysis of a spermidine-depleted B. subtilis speD mutant uncovered a nitrogen-, methionine-, and S-adenosylmethionine-sufficiency response, resulting in repression of gene expression related to purine catabolism, methionine and S-adenosylmethionine biosynthesis and methionine salvage, and signs of altered membrane status. Consistent with the spermidine requirement in biofilm formation, single-cell analysis of this mutant indicated reduced expression of the operons for production of the exopolysaccharide and TasA protein biofilm matrix components and SinR antagonist slrR. Deletion of sinR or ectopic expression of slrR in the spermidine-deficient ΔspeD background restored biofilm formation, indicating that spermidine is required for expression of the biofilm regulator slrR. Our results indicate that spermidine functions in biofilm development by activating transcription of the biofilm matrix exopolysaccharide and TasA operons through the regulator slrR.
Polyamine metabolism is an attractive anticancer drug target, since polyamines are absolutely required for cellular proliferation, and increased levels of polyamines and their biosynthetic enzyme ornithine decarboxylase (ODC) are associated with cancer. Triethylenetetramine (TETA) is a charge-deficient isosteric analogue of the polyamine spermidine (Spd) and a Cu(II)-chelating compound used for the treatment of Wilson's disease, and it has been implicated as a potential anticancer therapeutic drug. In the present study, we studied the effects of TETA in comparison with two other Cu(II)-chelators, D-penicillamine (PA) and tetrathiomolybdate (TTM), on polyamine metabolism in DU145 prostate carcinoma, MCF-7 breast carcinoma and JEG-3 choriocarcinoma cells. TETA induced antizyme, down-regulated ODC and inhibited [(14)C] Spd uptake. Moreover, it completely prevented α-difluoromethylornithine (DFMO)-induced increase in [(14)C] Spd uptake, and inhibited [(14)C] putrescine (Put) uptake and ODC activity in vivo Seven-day treatment of DU145 cells with TETA caused growth cessation by reducing intracellular polyamine levels and suppressing the formation of hypusinated eukaryotic translation initiation factor 5A (eIF5A). TETA or its N-acetylated metabolites also inhibited spermine (Spm), diamine and semicarbazide-sensitive amine oxidases and decreased the level of intracellular reactive oxygen species. Moreover, TETA inhibited the utilization of Put as energy source via the tricarboxylic acid (TCA) cycle, as indicated by decreased production of (14)CO2 from [(14)C] Put. These results indicate that TETA attacks multiple proven anticancer drug targets not attributed to copper chelation, which warrants further studies to reveal its potential in cancer chemoprevention and cure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.