A strictly positive continuous unbounded increasing function $\gamma(r)$ on the half-axis $[0,+\infty)$ is called growth function. Let the growth function $\gamma(r)$ satisfies the condition $\gamma(2r)\leq M\gamma(r)$ for some $M>0$ and for all $r>0$. In the paper, the class $JM(\gamma(r))^o$ of meromorphic functions of completely regular growth on the upper half-plane with respect to the growth function $\gamma$ is considered. The criterion for the meromorphic function $f$ to belong to the space $JM(\gamma(r))^o$ is obtained. The definition of the indicator of function from the space $JM(\gamma(r))^o$ is introduced. It is proved that the indicator belongs to the space $\mathbf{L}^p[0,\pi]$ for all $p>1$.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.