Electrochemical machining (ECM) is widely used in modern aircraft engine technology. This method was
developed on a step-by-step basis in accordance with development of gas turbine equipment. Introduction of new difficult
to machine materials into engines designs and improvement of accuracy of detail geometric parameters required new
technological solutions. ECM method has a number of advantages: zero tool wear, the process does not depend on
physical-mechanical properties of work piece material, no heat and force action on a work piece; these facts provide high
quality of the surface layer and increase engine life. However, electrochemical machining has also disadvantages which
essentially limit its applicability. This is primarily a low localization of ECM process. In order to eliminate this
disadvantage new ECM schemes were developed, inter-electrode gap was reduced, switched mode power supply units,
vibration of electrochemical machining electrode, etc. were used. Electrochemical machines design became more
complicated and ECM operations design techniques required new solutions, therefore the scientific inquiry in this area
continued intensively. Rapid development of computer technology contributed to the creation of digital models that
adequately describe processes in the inter-electrode spacing at ECM. It is necessary to create electronic databases for
various electrochemical metal-electrolyte systems, to develop techniques to simulate electric fields in the inter-electrode
spacing, and to profile tool electrode automatically. The authors carried out active researches in this area at all stages of
ECM development; they have a large number of publications in the field, including 4 monographs.
Самарский государственный аэрокосмический университет имени академика С.П. Королёва (национальный исследовательский университет)Лопатки компрессора являются наиболее сложными и ответственными деталями газотурбинного двигателя, что обуславливается стоимостью их изготовления, а также требованиями по надёжности и ресурсу. Перспективным способом изготовления лопаток является импульсная электрохимическая обра-ботка (ЭХО), основные преимущества которой заключаются в отсутствии силового и теплового воздей-ствия на обрабатываемую поверхность, в долговечности инструмента, в низких значениях параметров шероховатости при работе на высоких плотностях тока, в высокой точности копирования формы и в ста-бильности процесса при работе на достаточно малых межэлектродных зазорах. Изложены принципы для реализации модели электрохимического формообразования применительно к импульсной ЭХО, которые позволят реализовать инженерную методику имитации обработки и профилирование электрода-инструмента в условиях производства. При решении задачи электрохимического формообразования, с учётом факторов влияющих на процесс, предложен алгоритм описания процесса импульсной ЭХО, кото-рый базируется на применении численного метода при дискретизации обработки во времени и в про-странстве. Данный алгоритм позволит автоматизировать профилирование электродов-инструментов при импульсной электрохимической обработке.Электрохимическая обработка, симуляция, детали газотурбинного двигателя, электролит.
The article presents design optimization of machine accessories used for milling, according to required accuracy of geometrical parameter of machined part. The authors propose a computerized engineering analysis of deformation of device elements when cutting forces are applied. NX Nastran software is used for analysis. A parameter-oriented 3D model of a device was created for the procedure. The model was built with NX CAM software using the variable parameterization method that provides for developing multiplechoice flexible models of device assembly. The authors analyzed multiple designs of device elements which, when deformed under cutting forces, directly influenced the accuracy of geometrical dimension acquired after processing. It is shown that application of NX Nastran software and a parameter-oriented 3D model of the device facilitates the process of device redesign according to technical requirements for operation and machining conditions, thus significantly reducing engineering time and level of errors that occur throughout design and production stages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.