This review summarizes recently published data on the mechanisms of tumor cell interaction with the tumor microenvironment. Tumor stroma influences the processes of hepatocarcinogenesis, epithelial-to-mesenchymal transition, invasion, and metastasis. The tumor microenvironment includes both cellular and noncellular components. Main cellular components of hepatocellular carcinoma (HCC) stroma are tumor-associated fibroblasts, hepatic stellate cells, immune cells, and endothelial cells that produce extracellular components of tumor microenvironment such as extracellular matrix, various proteins, proteolytic enzymes, growth factors, and cytokines. The noncellular components of the stroma modulate signaling pathways in tumor cells and stimulate invasion and metastasis. The tumor microenvironment composition and organization can serve as prognostic factors in HCC pathogenesis. Current approaches in HCC targeted therapy are aimed at creating efficient strategies for interrupting tumor interactions with the stroma. Recent data on the composition and role of the microenvironment in HCC pathogenesis, as well as new developments in antitumor drug design are discussed.
Dysregulation of the fibroblast growth factor (FGF)/fibroblast growth factor receptor (FGFR) signaling pathway is frequently observed in multiple human malignancies, and thus, therapeutic strategies targeting FGFs and FGFRs in human cancer are being extensively explored. We observed the activation of the FGF/FGFR-signaling pathway in imatinib (IM)-resistant gastrointestinal stromal tumor (GIST) cells. Furthermore, we found that the activation of FGFR signaling has a significant impact on IM resistance in GISTs in vitro. Next, we tested the efficacy of BGJ398, a potent and selective FGFR1–3 inhibitor, in xenograft models of GISTs exhibiting secondary IM resistance due to receptor-tyrosine kinase (RTK) switch (loss of c-KIT/gain of FGFR2a). Five to eight-week-old female nu/nu mice were subcutaneously inoculated into the flank areas with GIST T-1R cells. Mice were randomized as control (untreated), IM, BGJ398, or a combination and treated orally for 12 days. IM had a moderate effect on tumor size, thus revealing GIST resistance to IM. Similarly, a minor regression in tumor size was observed in BGJ398-treated mice. Strikingly, a 90% decrease in tumor size was observed in mice treated with a combination of IM and BGJ398. Treatment with BGJ398 and IM also induced major histopathologic changes according to a previously defined histopathologic response score and resulted in massive myxoid degeneration. This was associated with increased intratumoral apoptosis as detected by immunohistochemical staining for cleaved caspase-3 on day 5 of the treatment. Furthermore, treatment with BGJ398 and IM significantly reduced the proliferative activity of tumor cells as measured by positivity for Ki-67 staining. In conclusion, inhibition of FGFR signaling substantially inhibited the growth of IM-resistant GISTs in vitro and showed potent antitumor activity in an IM-resistant GIST model via the inhibition of proliferation, tumor growth, and the induction of apoptosis, thereby suggesting that patients with advanced and metastatic GISTs exhibiting IM resistance might benefit from therapeutic inhibition of FGFR signaling.
Inhibition of KIT-signaling is a major molecular target for gastrointestinal stromal tumor (GIST) therapy, and imatinib mesylate (IM) is known as the most effective first-line treatment option for patients with advanced, unresectable, and/or metastatic GISTs. We show here for the first time that the inhibition of KIT-signaling in GISTs induces profound changes in the cellular secretome, leading to the release of multiple chemokines, including FGF-2. IM increased migration, invasion, and colony formation of IM-resistant GISTs in an FGF2-dependent manner, whereas the use of blocking anti-FGF2 antibodies or BGJ398, a selective FGFR inhibitor, abolished these effects, thus suggesting that the activation of FGF2-mediated signaling could serve as a compensatory mechanism of KIT-signaling inhibited in GISTs. Conversely, FGF-2 rescued the growth of IM-naive GISTs treated by IM and protected them from IM-induced apoptosis, consistent with the possible involvement of FGF-2 in tumor response to IM-based therapy. Indeed, increased FGF-2 levels in serum and tumor specimens were found in IM-treated mice bearing IM-resistant GIST xenografts, whereas BGJ398 used in combination with IM effectively inhibited their growth. Similarly, increased FGF-2 expression in tumor specimens from IM-treated patients revealed the activation of FGF2-signaling in GISTs in vivo. Collectively, the continuation of IM-based therapy for IM-resistant GISTs might facilitate disease progression by promoting the malignant behavior of tumors in an FGF2-dependent manner. This provides a rationale to evaluate the effectiveness of the inhibitors of FGF-signaling for IM-resistant GISTs.
Microtubule targeting agents (MTAs) that interfere with the dynamic state of the mitotic spindle are well-known and effective chemotherapeutic agents. These agents interrupt the microtubule network via polymerization or depolymerization, halting the cell cycle progression and leading to apoptosis. We report two novel pyrrole-based carboxamides (CAs) (CA-61 and -84) as the compounds exhibiting potent anti-cancer properties against a broad spectrum of epithelial cancer cell lines, including breast, lung, and prostate cancer. The anti-cancer activity of CAs is due to their ability to interfere with the microtubules network and inhibit tubulin polymerization. Molecular docking demonstrated an efficient binding between these ligands and the colchicine-binding site on the tubulin. CA-61 formed two hydrogen bond interactions with THR 179 (B) and THR 353 (B), whereas two hydrogen bonds with LYS 254 (B) and 1 with ASN 101 (A) were identified for CA-84. The binding energy for CA-84 and CA-61 was −9.910 kcal/mol and −9.390 kcal/mol. A tubulin polymerization assay revealed a strong inhibition of tubulin polymerization induced by CA-61 and -84. The immunofluorescence data revealed the disruption of the tubulin assembly in CA-treated cancer cells. As an outcome of the tubulin inhibition, these compounds halted the cell cycle progression in the G2/M phase, leading to the accumulation of the mitotic cells, and further induced apoptosis. Lastly, the in vivo study indicated that CAs significantly inhibited the HCC1806 breast cancer xenograft tumor growth in a nude mouse model. Collectively, we identified the novel CAs as potent MTAs, inhibiting tubulin polymerization via binding to the colchicine-binding site, disrupting the microtubule network, and exhibiting potent pro-apoptotic activities against the epithelial cancer cell lines both in vitro and in vivo.
We showed recently that ethyl-2-amino-pyrrole-3-carboxylates (EAPCs) exhibit potent antiproliferative activities against a broad spectrum of soft tissue sarcoma and gastrointestinal stromal tumor (GIST) cell lines in vitro. The molecular mechanism of action was owing to inhibition of tubulin polymerization and induction of a robust G2/M cell-cycle arrest, leading to the accumulation of tumor cells in the M-phase and induction of apoptosis. Given that more than 50% of the patients with GISTs develop resistance to imatinib (IM) over the 2 years of IM-based therapy, we examined whether EAPCs exhibit activity against IM-resistant GISTs in vitro and in vivo. A real-time antiproliferation assay illustrated the potent antiproliferative activities of EAPCs against IM-sensitive and IM-resistant GISTs. This was in agreement with the colony formation assay, which revealed potent antiproliferative activities of EAPCs against IM-resistant GISTs, being much stronger when compared with IM and doxorubicin, a topoisomerase II inhibitor. Next, we tested the efficacy of EAPCs in the xenograft model of GISTs, exhibiting secondary IM resistance owing to RTK switch (loss of c-KIT/gain of FGFR2α). A total of 30 5-to 8-week-old female nu/nu mice were subcutaneously inoculated into the flank areas with IM-resistant GIST-T1-R cells (100 μl of 1 × 10 7 GIST T-1R cells/ml suspension, in Dulbecco's PBS). Mice were randomized as control (untreated), IM (50 mg/kg), EAPC-20 (10 mg/kg) or EAPC-24 (10 mg/kg) and were treated orally for 10 days. IM has a minor inhibitory effect on tumor size, thus revealing GIST resistance to IM. In contrast, both of EAPCs effectively reduced the tumor size. This was associated with an increased intratumoral apoptosis as detected by immunohistochemical staining for cleaved caspase-3 on day 5 of the treatment. Furthermore, both EAPCs significantly reduced the proliferative activity of tumor cells in the central zones of tumors as measured by positivity for Ki-67 staining. More importantly, in EAPC-24-treated GISTs, the histological response was mainly characterized by the induction of necrosis, whereas EAPC-20 induced the signs of intratumoral fibrosis and myxoid degeneration. Collectively, our data suggest that EAPC-20 and EAPC-24 are the perspective antitumor agents that exhibit antiproliferative and cytotoxic activity against GISTs exhibiting secondary resistance to IM. Anti-Cancer Drugs 30:475-484
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.