We demonstrate a novel approach to the controlled loading of inorganic nanoparticles and proteins into submicron- and micron-sized porous particles. The approach is based on freezing/thawing cycles, which lead to high loading densities. The process was tested for the inclusion of Au, magnetite nanoparticles, and bovine serum albumin in biocompatible vaterite carriers of micron and submicron sizes. The amounts of loaded nanoparticles or substances were adjusted by the number of freezing/thawing cycles. Our method afforded at least a three times higher loading of magnetite nanoparticles and a four times higher loading of protein for micron vaterite particles, in comparison with conventional methods such as adsorption and coprecipitation. The capsules loaded with magnetite nanoparticles by the freezing-induced loading method moved faster in a magnetic field gradient than did the capsules loaded by adsorption or coprecipitation. Our approach allows the preparation of multicomponent nanocomposite materials with designed properties such as remote control (e.g. via the application of an electromagnetic or acoustic field) and cargo unloading. Such materials could be used as multimodal contrast agents, drug delivery systems, and sensors.
Formulated forms of cancer therapeutics enhance the efficacy of treatment by more precise targeting, increased bioavailability of drugs, and an aptitude of some delivery systems to overcome multiple drug resistance of tumors. Drug carriers acquire importance for anti-cancer interventions via targeting tumor-associated macrophages with active molecules capable to either eliminate them or change their polarity. Although several packaged drug forms have reached the market, there is still a high demand for novel carrier systems to hurdle limitations of existing drugs on active molecules, toxicity, bioeffect, and stability. Here, we report a facile assembly and delivery methodology for biodegradable polymeric multilayer capsules (PMC) with the purpose of further use in injectable drug formulations for lung cancer therapy via direct erosion of tumors and suppression of the tumor-promoting function of macrophages in the tumor microenvironment. We demonstrate delivery of low-molecular-weight drug molecules to lung cancer cells and macrophages and provide details on in vivo distribution, cellular uptake, and disintegration of the developed PMC. Poly-l-arginine and dextran sulfate alternately adsorb on a ∼500 nm CaCO3 sacrificial template followed by removal of the inorganic core to obtain hollow capsules for consequent loading with drug molecules, gemcitabine or clodronate. The capsules further compacted upon loading down to ∼250 nm in diameter via heat treatment. A comparative study of the capsule internalization rate in vitro and in vivo reveals the benefits of a diminished carrier size. We show that macrophages and epithelial cells of the lungs and liver internalize capsules with efficacy higher than 75%. Using an in vivo mouse model of lung cancer, we also confirm that tumor lungs better retain smaller capsules than the healthy lung tissue. The pronounced cytotoxic effect of the encapsulated gemcitabine on lung cancer cells and the ability of the encapsulated clodronate to block the tumor-promoting function of macrophages prove the efficacy of the developed capsule loading method in vitro. Our study taken as a whole demonstrates the great potential of the developed PMC for in vivo treatment of cancer via transporting active molecules, including those that are water-soluble with low molecular weight, to both cancer cells and macrophages through the bloodstream.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.