Initial stages of vacuum condensation of As-S amorphous films on carbon substrates at the stages of nucleation and formation of condensed phase islands are studied using the electron microscopy technique. Two stages of the processes of critical nuclei formation were found: intense primary nucleation and slow secondary nucleation that occurs in parallel with the growth of the formed nuclei. The sizes of the critical nuclei of the amorphous As-S films, the primary nuclei density, the size distribution of the condensed phase islands at the moment of the nucleation processes termination and the mean diffusion length for different atomic particles of the As-S vapor phase on the substrate surface were determined. The results obtained show that at room condensation temperatures most of various multi atomic particles of the AsnSm vapor have rather high diffusion mobility over the carbon substrate surface. Therefore, when simulating the condensation processes, the As-S materials could be considered as a non-equilibrium two-dimensional gas with an extremely complicated chemical composition.
Зображення частково впорядкованих (скорочено ч. в.) множин, які введені Л. А. Назаровою і А. В. Ройтером (в матричній формі) в 1972 р., відіграють важливу роль в сучасній теорії зображень. У своїй першій праці за цією тематикою М. М. Клейнер довів, що ч. в. множина S має скінченний зображувальний тип (тобто має скінченне число нерозкладних зображень, з точністю до еквівалентності) тоді і лише тоді, коли вона не містить ч. в. підмножин вигляду K1= (1, 1, 1, 1), K2 = (2, 2, 2), K3 = (1, 3, 3), K4 = (1, 2, 5) і K5 = (N, 4). Вказані ч. в. множини називаються критичними ч. в. множин щодо скінченності типу (тобто вони є мінімальними ч. в. множинами з нескінченним числом нерозкладних зображень, з точністю до еквівалентності). Їх також називають (критичними) ч. в. множинами Клейнера. У 1974 р. Ю. А. Дрозд довів, що ч. в. множина S має скінченний зображувальний тип тоді і лише тоді, коли її квадратична форма Тітса є слабко додатною (тобто додатною на множині невід'ємних векторів). Таким чином, ч. в. множини Клейнера є критичними щодо слабкої додатності квадратичної форми Тітса, і інших таких ч. в. множин немає (з точністю до ізоморфізму). У 2005 р. автори довели що ч. в. множина є критичною щодо додатності квадратичної форми Титса тоді і лише тоді, коли вона мінімаксно ізоморфна деякій ч. в. множині Клейнера. Подібну ситуацію маємо з ч. в. множинами ручного зображувального типу. У 1975 р. Л. А. Назарова довела, що ч. в. множина S є ручною тоді і лише тоді, коли вона не містить ч. в. підмножин вигляду N1 = (1, 1, 1, 1, 1), N2 = (1, 1, 1, 2), N3 = (2, 2, 3), N4 = (1, 3, 4), N5 = (1, 2, 6) і (N, 5). Вона назвала ці ч. в. множини суперкритичними; вони є також критичними щодо слабкої невід'ємності квадратичної форми Тітса. У 2009 році автори довели, що ч. в. множина є критичною щодо невід'ємності квадратичної форми Тітса тоді і лише тоді, коли вона мінімаксно ізоморфна деякій суперкритичній ч. в. множині. У цій статті вивчаються комбінаторні властивості ч. в. множин, мінімаксно ізоморфних суперкритичній ч. в. множині найбільшої висоти, тобто (1, 2, 6). Важливість вивчення мінімаксно ізоморфних ч. в. множин визначається тим фактом, що їх квадратичні форми Тітса ℤ-еквівалентні, а сам мінімаксний ізоморфізм є досить загальною конструктивно визначеною ℤ-еквівалентністю для квадратичних форм Тітса ч. в. множин.
Representations of posets introduced in 1972 by L. O. Nazarova and A. V. Roiter, arise when solving many problems in various fields of mathematics. One of the most important problem in the theory of representations of any objects is a description of the cases of representation finite type and representation tame type. The first of these problems for posets was solved by M. M. Kleiner, and the second L. O, Nazarova. M. M. Kleiner proved that a poset has finite type if and only if it does not contain subsets of the form (1, 1, 1, 1), (2, 2, 2), (1, 3, 3), (1, 2, 5) and (И, 4), which are called the critical sets. A generalization of this criterion to the tame case was obtained by L. O. Nazarova. The corresponding sets are called supercritical and they consist of the posets (1, 1, 1, 1, 1), (1, 1, 1, 2), (2, 2, 3), (1, 3, 4), (1, 2, 6) and (И, 5). V. M. Bondarenko proposed a generalization of the critical and supercritical posets, calling them 1-oversupercritical. This paper studies the combinatorial properties of one of such sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.