Stricter requirements for the quality and reliability of manufactured products, as well as the need to increase the service life of machines, mechanisms and various devices, the operation of which is associated with the use of liquid or gas-air media, is the reason for the emergence of new and improvement of traditional methods for obtaining filter materials with higher performance characteristics. A method for a comprehensive analysis of the properties of regenerated filter materials for fine air purification is proposed. The overwhelming majority of filters, after their service life is exhausted, cannot be regenerated, since this, as a rule, is associated with high energy costs. At the same time, the development of methods for such regeneration is quite relevant from the point of view of resource conservation. In this regard, the purpose of this work is to use a number of physical research methods for the purpose of a comprehensive analysis of polymeric fibrous filter materials for air purification that have undergone regeneration. Filtration materials obtained by the «melt-blowing» method from polymer granules by processing the granulate in an extruder, aerodynamic spraying of the melt and the formation of a fibrous-porous layer on a forming mandrel were selected for research. The main filtration characteristics of the original and regenerated filter materials (breakthrough coefficient, aerodynamic drag),as well as the electrophysical properties of the primary and secondary filter materials, the presence of a spontaneous electret charge have been investigated. The main stages of regeneration and evaluation of physicochemical, mechanical and operational properties of fibrous-porous materials that have undergone secondary thermo-aerodynamic processing in comparison with the original ones are described. It is shown that the studied materials retain their basic properties, while the structure of the fibers changes and the electret effect is enhanced.
Статья поступила в редакцию 4 сентября 2019 г.Аннотация. В рамках работы выполнено исследование частотных зависимостей коэффициентов отражения и передачи электромагнитного излучения в диапазоне 0,7…17 ГГц экранов на основе железо-бариевого, железо-стронциевого и железо-титанового ферритов. Проанализировано влияние добавления диэлектрического компонента (порошкообразного электрокорунда) в состав таких экранов на значения их коэффициентов отражения и передачи электромагнитного излучения в указанном диапазоне частот.
One of the main means of reducing aerodynamic noise is the use of silencers, which can be made of various porous materials, depending on the specific operating conditions. The aim of the work is to study the dependence of the noise reduction on the characteristics of porous permeable materials (PPM) obtained by vibration molding from metal powders. Such PPMs have a wide range of porosity, high permeability, mechanical strength, provide the ability to work in a wide temperature range, high corrosion resistance, and therefore find more and more widespread application in practice. When designing silencers, their pore size, permeability, mechanical strength, cost, and the chemical composition of the material are taken into account. Basic research methods – determination of noise level, powder particle size, permeability coefficient, pore size. Vibration molding of PPM samples for experimental studies was carried out on a ВЭДС 10-1А vibration bench with vibration parameters that ensured the maximum bulk density of the powder in the mold (acceleration 10 m/s2, frequency 500 Hz). Main results – the dependence of the noise reduction value on the PPM characteristics obtained by the method of vibration molding of metal powders of various grades of various particle size distribution was studied. It has been shown that the most effective damping is provided by PPM from spherical bronze powder of the БрОФ10-1 grade with particle sizes of 350–400 microns, which provides at the same time a combination of a high level of noise reduction and high permeability to air or gas. It was found that the thickness of the muff significantly affects the efficiency of noise suppression, while the minimum thickness of the muff, which provides a sufficiently high degree of noise reduction, is about 3.5 mm, therefore it is not practical to increase the thickness of the muffler material above this value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.