In this work, we report on the growth, fabrication, and device characterization of wide-band-gap heterojunction light-emitting diodes based on the n-ZnO/p-GaN material system. The layer structure is achieved by first growing a Mg-doped GaN film of thickness 1 μm on Al2O3(0001) by molecular-beam epitaxy, then by growing Ga-doped ZnO film of thickness 1 μm by chemical vapor deposition on the p-GaN layer. Room-temperature electroluminescence in the blue-violet region with peak wavelength 430 nm is observed from this structure under forward bias. Light–current characteristics of these light-emitting diodes are reported, and a superlinear behavior in the low current range with a slope 1.9 and a sublinear behavior with a slope 0.85 in the high current range are observed.
We report on the fabrication of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates. Hydride vapor phase epitaxy was used to grow p-type AlGaN, while chemical vapor deposition was used to produce the n-type ZnO layers. Diode-like, rectifying I–V characteristics, with threshold voltage ∼3.2 V and low reverse leakage current ∼10−7 A, are observed at room temperature. Intense ultraviolet emission with a peak wavelength near 389 nm is observed when the diode is forward biased; this emission is found to be stable at temperatures up to 500 K and shown to originate from recombination within the ZnO.
A synthesis route to rock-salt zinc oxide (rs-ZnO), high-pressure phase metastable at ambient conditions, has been developed. High-purity bulk nanocrystalline rs-ZnO has been synthesized from wurtzite (w) ZnO nanopowders at 7.7 GPa and 770-820 K and for the first time recovered at normal conditions. Structure, phase composition and thermal phase stability of recovered rs-ZnO have been studied by synchrotron X-ray powder diffraction and X-ray absorption spectroscopy (XANES and EXAFS) at ambient pressure. Phase purity of rs-ZnO was achieved by usage of w-ZnO nanoparticles with narrow size distribution as a pristine material synthesized by various chemical methods. At ambient pressure rs-ZnO could be stable up to 360 K. The optical properties of rs-ZnO have been studied by conventional cathodoluminescence in high vacuum at room and liquid-nitrogen temperatures. The nanocrystalline rs-ZnO at 300 and 77 K has shown bright blue luminescence at 2.42 and 2.56 eV, respectively. KEYWORDS cubic zinc oxide, nanocrystals, high-pressure synthesis, phase transition, luminescent properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.