Purpose. Efficient use of natural energy resources is one of the priorities of the state policy in the sphere of universities and institutions of the Ministry of Education and Science of Ukraine. Besides search and development the new efficient and clean energy systems it is necessary to implement optimal management of the development and operation of existing facilities, reducing their energy costs. Purpose of this work is to develop consumption volume technology of electricity and heat by scientific departments of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan (DNURT) for further finding the ways to reduce energy consumption. The problem is due to the specifics of University’s energy scheme. There is a difficulty for the installation of energy meters and data acquisition about their use in individual branches and structural units. At the same time it is impossible to assess qualitatively the energy position of scientific departments. Methodology. The method to determine the electricity and heat consumption for space heating of scientific departments at the university is based on «The intersectoral rules of electricity and heat energy for institutions and public sector organizations in Ukraine» and «Codes and regulations on rationing of fuel and heat energy for heating the residential buildings as well as for economic needs in Ukraine». Findings. Developed determining expenditure technology of electricity and heat for heating by scientific departments at the DNURT named after Academician V. Lazaryan allows obtaining data on energy consumption in individual units without direct measure and analyzing the effectiveness of energy saving technologies. Originality. It is represented by energy costs in the form of two components and these components are defined on the basis of the energy audit. This enables the energy inputs to implement energy efficiency measures in the research departments of the university. Practical value. The developed method can be used as practical tools to monitor energy consumption in the above mentioned university and in similar facilities.
Originality. The mathematical model of heat and mass exchange process of the outdoor swimming pool was developed, which allows calculating the basic heat and mass loses that occur during its exploitation. Practical value. The method of determining heat and mass loses of outdoor swimming pool as a software system was developed and implemented. It is based on the mathematical model proposed by the authors. This method can be used for the conceptual design of energy-efficient structures of outdoor pools, to assess their use of energy-intensive and selecting the optimum energy-saving measures. A further step in research in this area is the experimental validation of the method of calculation of heat losses in outdoor swimming pools with its use as an example the pool of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan. The outdoor pool, with water heating-up from the boiler room of the university, is operated year-round.
A procedure has been developed of calculating a 3-D temperature field with application of FEM for determination of vulcanization time of elastomer products with geometrically complex heating surfaces. On the example of heavy-duty tire it has been shown that the account of the 3-D nature of temperature distribution allows to reduce vulcanization time by 6–8 % in comparison with the plane section procedure, which is currently used in industry, which results in significant savings of thermal energy in conditions of commercial production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.