Проведено аналіз методів хромування для підвищення зносостійкості та корозійної тривкості змінних деталей гідравлічної частини поршневих насосів: штоків поршнів, надставок штоків, плунжерів і циліндрових втулок. Обґрунтовано переваги застосування електрохімічного хромування деталей в проточному електроліті з нанододатками, яке забезпечує отримання зносостійких покриттів зі стабільними показниками якості поверхні та високими фізико-механічними властивостями. Розроблено систему автоматизованого керування, яка забезпечує підтримання на заданому рівні технологічних параметрів процесу електрохімічного хромування в проточному електроліті: співвідношення концентрацій компонентів електроліту, швидкості потоку, густини струму та температури електроліту, а також дозволяє контролювати величину водневого показника електроліту та його електричного опору. Дослідили нанесення на зразки зі сталі 40ХН, які поверхнево гартували та шліфували, хромового покриття із стандартного електроліту з нанододатками. Визначали шорсткість поверхні, товщину і мікротвердість покриття. Хромовані зразки випробовували на зношування під час зворотно-поступального руху. Величину зносу визначали гравіметричним методом. Провели статистичну обробку результатів експерименту із застосуванням кореляційно-регресійного аналізу. Дослідили вплив масового співвідношення концентрацій компонентів електроліту, густини струму, швидкості потоку електроліту і температури електроліту на величину шорсткості, мікротвердості та зносу покриттів. Побудували регресійні моделі другого порядку, які описують залежності величини шорсткості поверхні, мікротвердості та зносу хромових покриттів від технологічних параметрів процесу. Встановлено, що зростання величини співвідношення концентрацій компонентів електроліту, швидкості потоку та густини струму призводить до зниження шорсткості, а збільшення температури електроліту спричиняє збільшення шорсткості хромового покриття. Технологічні параметри процесу хромування практично однаково впливають на збільшення величини мікротвердості та зменшення зношування покриття, а введення до складу хромового покриття нанооксидів алюмінію призводить до зростання його мікротвердості та відповідно, і зменшення зносу.
Проведено аналіз методів визначення припусків на механічну обробку металевих, оксидних та керамічних покриттів, які базуються на міцності покриттів, зміні мікротвердості, забезпечені одержання мінімальної шорсткості обробленої поверхні. Визначення раціональних припусків на механічну обробку деталей з електрохімічними хромовими покриттями є важливою техніко-економічною задачею машинобудування, оскільки занижені значення припусків не гарантують досягнення необхідної точності розмірів та відповідної шорсткості робочої поверхні деталей, призводить до зниження ресурсу роботи виробів, а завищені значення припусків призводять до зростання витрат на механічну обробку. Мета – розроблення інженерної методики визначення припусків на механічну обробку сталевих деталей з хромовими електрохімічними покриттями для забезпечення необхідної точності та шорсткості зовнішніх циліндричних поверхонь. Покриття наносили на циліндричні сталеві зразки у спокійному та проточному електроліті на установці спорядженій автоматизованою системою контролю технологічних параметрів процесу електрохімічного хромування. Досліджено шорсткість поверхонь після алмазного круглого шліфування електрохімічних хромових покриттів нанесених у спокійному та в проточному електролітах. Встановлено, що товщина дефектного шару залежить від способу нанесення електрохімічного хромового покриття. Хромування сталевих деталей у проточному електроліті забезпечує одержання меншої товщини дефектного шару порівняно з хромуванням у спокійному електроліті. Також встановлено, що мінімальний припуск, для одержання поверхонь із мінімальною шорсткістю після алмазного шліфування електрохімічного хромового покриття, залежить від загальної товщини покриття та збільшується із її зростанням. Аналіз результатів розрахунку припусків показав, що припуск на механічну обробку заготовок деталей з хромовим покриттям, нанесеним у спокійному електроліті, є більшим у порівнянні із покриттям, отриманим у проточному електроліті в 2,5 рази. Це обумовлено нерівномірним нанесенням електрохімічного хромового покриття у спокійному електроліті внаслідок ускладнення газовідведення з поверхні покриття у процесі електролізу порівняно із електролізом у проточному електроліті. Вказані недоліки хромування в спокійному електроліті усуваються під час нанесення покриття на циліндричні деталі в проточному електроліті, про що свідчить також, зменшення конусоподібності деталей з покриттями близько в 1,7 раза та глибини дефектного поверхневого шару – 2,6 раза відповідно. Наукова новизна роботи полягає у встановленні товщини дефектного шару для хромових електрохімічних покриттів, нанесених у спокійному та проточному електроліті на циліндричні сталеві деталі, після зняття якого алмазним круглим шліфуванням забезпечується отримання обробленої поверхні з мінімальною шорсткістю. Практична цінність – розроблено інженерну методику розрахунку припусків на механічну обробку (операцію алмазного шліфування) циліндричних сталевих деталей з хромовими електрохімічними покриттями.
У статті проведено аналіз та порівняння найбільш поширених методів поверхневого зміцнення деталей машин покриттями. Відзначено, що шляхом використання захисних покриттів можна вирішувати низку науково-технічних проблем машинобудування, забезпечуючикомплексне раціональне використання властивостей основи деталі та властивостей матеріалу захисного покриття. Мета дослідження – провести аналіз і порівняння сучасних методів поверхневого зміцнення деталей машин металевими електрохімічними хромовими та оксидними покриттями і встановити тенденції їх розвитку. Для проведення досліджень технологій нанесення електрохімічних хромових покриттів на сталь та алюміній і формування оксидних покриттів на алюмінієвих литих та деформованих сплавах у режимі анодування та плазмоелктролітичного оксидування в електроліті застосували системний підхід і використали бібліографічний метод. Під час досліджень використовували електронні ресурси бібліографічних реферативних баз даних: Scopus, Web of Science, Google Scholar. Досліджено технологічні процеси нанесення металевих електрохімічних хромових покриттів на сталь, мідь та алюміній. Розглянуто процеси електролізу в спокійному та проточному електроліті на основі шестивалентного та тривалентного хрому за різних струмових режимів. Вивчено формування оксиднихпокриттів на алюмінієвих деформованих, литих сплавах та напилених алюмінієвих шарах, а також магнієвих сплавах. Встановлено, що тверде анодування забезпечує одержання оксидних покриттів меншої товщини порівняно з інноваційним методом – плазмоелектролітичним оксидуванням. Описано хімічні, електро- та плазмохімічні реакції під час утворення шарів оксидних покриттів. Проведено порівняння технологічних режимів нанесення та властивостей сформованих покриттів. Наукова новизна отриманих результатів дослідження полягає у застосуванні системного підходу до аналізу та порівняння сучасних методів формування металевих електрохімічних хромових та оксидних покриттів і визначенні перспектив їх подальшого вдосконалення. Практична значущість – обґрунтувано раціональний вибір металевих та оксидних покриттів для зміцнення деталей машин.
У праці розглянуто основні типи покриттів та їх розповсюдженість у світі за частотою застосування в машинобудуванні. Відзначено, що найбільш розповсюдженими серед них є металеві – електрохімічні хромові покриття та неме-талеві – оксидні покриття, сформовані у різних електролітах. Проведено аналіз способів та обладнання для утилізації відпрацьованих електролітів для формування покриттів на деталях машин у гальванічних цехах і дільницях. Як об’єкти дослідження вибрали електроліти для електрохімічного хромування сталей та для плазмовоелектролітичного оксидування алюмінієвих сплавів. Використано системний підхід до вирішення актуальної проблеми утилізації відпрацьованих електролітів гальванічних ванн для нанесення покриттів, що є особливо важливим завданням на етапі переходу до «зелених технологій». Розроблено технологічну схему переробки відпрацьованих електролітів, яка включає процеси осадження, нейтралізації та очищення. Застосовано мехатронний підхід і комп’ютерне моделювання під час проектування установки для реалізації вказаної технології, котра містить два реактори і гідроциклон-фільтр, які сполучені трубопроводами, а також оснащену насосами, вказівниками рівня рідини, рН-метричним обладнанням та автоматизованою системою керу-вання. В склад установки входить розроблена нова конструкція гідроциклон-фільтра, який забезпечує комбіноване очищення рідин від завислих частинок забруднення шляхом одночасного поєднання відцентрового очищення та фільтрування, а також дозволяє здійснювати промивання його кільцевого зазору та регенерацію фільтрувальної зернистої засипки фі-льтрувальної касети. Розроблена технологія утилізації відпрацьованих електролітів є ефективною під час експлуатації та не потребує дороговартісного обладнання, процес є екологічно безпечним як для обслуговуючого персоналу, так і для навколишнього природного середовища, а продукти переробки можна повторно використовувати у виробничому циклі.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.