To study positioning of the mRNA stop signal with respect to polypeptide chain release factors (RFs) and ribosomal components within human 80S ribosomes, photoreactive mRNA analogs were applied. Derivatives of the UUCUAAA heptaribonucleotide containing the UUC codon for Phe and the stop signal UAAA, which bore a perfluoroaryl azido group at either the fourth nucleotide or the 3P P-terminal phosphate, were synthesized. The UUC codon was directed to the ribosomal P site by the cognate tRNA Phe , targeting the UAA stop codon to the A site. Mild UV irradiation of the ternary complexes consisting of the 80S ribosome, the mRNA analog and tRNA resulted in tRNA-dependent crosslinking of the mRNA analogs to the 40S ribosomal proteins and the 18S rRNA. mRNA analogs with the photoreactive group at the fourth uridine (the first base of the stop codon) crosslinked mainly to protein S15 (and much less to S2). For the 3P P-modified mRNA analog, the major crosslinking target was protein S2, while protein S15 was much less crosslinked. Crosslinking of eukaryotic (e) RF1 was entirely dependent on the presence of a stop signal in the mRNA analog. eRF3 in the presence of eRF1 did not crosslink, but decreased the yield of eRF1 crosslinking. We conclude that (i) proteins S15 and S2 of the 40S ribosomal subunit are located near the A site-bound codon; (ii) eRF1 can induce spatial rearrangement of the 80S ribosome leading to movement of protein L4 of the 60S ribosomal subunit closer to the codon located at the A site; (iii) within the 80S ribosome, eRF3 in the presence of eRF1 does not contact the stop codon at the A site and is probably located mostly (if not entirely) on the 60S subunit. ß
The use of various nanoparticles is a promising way to solve the current problem of drug delivery in medicine and biology. Nanocomposites consisting of titanium dioxide and oligonucleotides noncovalently attached to nanoparticles through the polylysine linker (TiO2 x PL-DNA) have been designed to deliver of DNA fragments into cells. Three forms of TiO2 nanoparticles (amorphous, anatase, and brookite) were used for construction of nanocomposites. The size, morphology, and chemical composition of TiO2 nanoparticles and TiO2 x PL-DNA nanocomposites were characterized. DNA fragments in the proposed nanocomposites were shown to retain their ability to form complementary complexes. TiO2 x PL-DNA nanocomposites independently on the form of nanoparticles were shown by confocal microscopy to penetrate into HeLa cells without any transfection agents and physical impact. The presented type of nanocomposites can be applied in the thriving technology of drug delivery to achieve high therapeutic and biological efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.