Исследовано влияние отжига на микроструктуру и механические свойства ультрамелкозернистого (УМЗ) технически чистого Al, предварительно подвергнутого интенсивной пластической деформации кручением под давлением. Установлено, что отжиг УМЗ-образцов в диапазоне температур 363-473 K в течение 1 h приводит к повышению условного предела текучести и предела прочности, прирост которых достигает максимального значения (до 50 и 30% соответственно) после отжига при 423 K. Обсуждается ключевая роль неравновесных большеугловых границ зерен в полученном эффекте упрочнения УМЗ-Al путем отжига. Увеличение прочности сопровождается значительным снижением пластичности. Предложен новый подход для улучшения пластичности УМЗ-Al при сохранении высокого уровня прочности. Он заключается во введении дополнительной плотности дислокаций в релаксированную отжигом УМЗ-структуру. Авторы (М.Ю.М. и Р.З.В.) выражают благодарность Министерству образования и науки РФ за финансовую поддержку в рамках проекта N 14.Б25.31.0017. Рентгеноструктурные исследования проведены с использованием оборудования Ресурсного центра научного парка СПбГУ "Рентгенодифракционные методы исследования". DOI: 10.21883/FTT.2017.10.44964.094
The effect of high pressure torsion (HPT) at elevated temperatures of 230 and 280°C on the microstructure, mechanical properties and electrical conductivity of ultrafine-grained (UFG) Al-0.4Zr alloy was studied. The initial UFG structure in the material of the study was preliminarily formed by HPT-processing at room temperature. It was shown that the additional deformation of the UFG Al-0.4Zr alloy at elevated temperatures leads to a simultaneous significant increase in strength from 140 to 230-280 MPa and electrical conductivity from ~ 47.5% to 52-54% IACS. The obtained results are compared with the effect of annealing at the same temperatures on the microstructure and properties of the UFG Al-0.4Zr alloy. It was found that, compared with annealing, severe plastic deformation at the same temperature leads to more efficient formation of nanoscale precipitates of the Al3Zr secondary phase and, consequently, to a larger decrease in the Zr concentration in the solid solution, which provides a significant increase in electrical conductivity. Based on the obtained microstructural parameters, the contributions of various hardening mechanisms to the total hardening and electron scattering mechanisms to electrical resistivity are estimated. Comparison of the theoretical estimates with the experimental results indicates that the hardening in the UFG structure of the Al-0.4Zr alloy caused by additional SPD at elevated temperatures cannot be described only by the action of hardening mechanisms traditional for UFG materials. Possible reasons for the colossal hardening obtained are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.