Due to modern microcomputers and platforms based on microprocessors such as, for example, Raspberry Pi, Orange Pi, Nano Pi, Rock Pi, Banana Pi, Asus Tinker Board – the development of prototypes of em-bedded systems is possible in a «design» mode. The software part is implemented on the basis of operat-ing systems and standard technologies based on well-known programming languages such as C / C++, Python, C#, Java, etc. In such case the control channel for the embedded system can be either imple-mented via a web service separated by a communication channel or controlled independently. It is im-portant to understand that creating an embedded system on a standard platform is much more expensive than buying a ready-made mass-produced device with the same functionality. Therefore, it makes sense to use platforms like the Raspberry Pi mainly for individual artificial devices. If it is necessary to build a project of embedded systems and there is a problem with choosing a hardware platform for the client side, then currently there is a wide range of boards and solutions for building an efficient and inexpen-sive system using ready-made modules. The number of expansion cards and various sensors, video cam-eras, internet connection via Ethernet, Wi-Fi and Bluetooth provides a wide range of opportunities for building almost any solution based on this component base. The foundation can be made within a small budget, with minimal time spent, using large blocks and ready-made libraries for programming embed-ded systems. This article presents the results of research and development work on the creation of a software and hardware infrastructure of a terrestrial platform with the elements of artificial intelligence. Based on the actual results of the research, a deployment diagram and a component diagram of such an infrastructure have been constructed.
У роботі розглянуто спосіб підвищення ефективності обміну структурованими даними, який може застосовуватися під час розробки програмного забезпечення. Як засоби вирішення проблеми представлено власний формат серіалізації даних, спеціально розроблений з врахуванням специфіки сутностей у реляційній моделі, та механізм програмної обробки даних при десеріалізації, що дозволяє значно підвищити продуктивність роботи застосунку. Фактичним результатом дослідження є побудова концепції експериментального формату та варіант реалізація запропонованого методу обробки даних.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.