A dynamic simulation model of the contractile function of the heart is presented. The contractile function simulation is based on the modeling of the muscle fibers' structure according to the Atlas of human anatomy and the use of parameters of their geometric shape as parameters that control the contraction. The basic concepts of the architecture of muscle fibers of the myocardium and the structure of the blood supply to the heart are investigated. An algorithm is developed for local parameterization of the contractile function of the heart, which mimics blood flow and conduction disturbances via special control functions. The algorithm of the simulation model is shown in the example of only the left ventricle of the heart but is embedded in the full three-dimensional model of the ventricular complex of the heart. The simulation model is implemented as a solid-state parameterized model in the Autodesk Maya tool environment, managed by a program in the embedded Python language. The result is compared with the results of the OpenCMISS software in favor of the latter. It is planned to continue work with the implementation of the most advanced concept of the myocardial architecture of Torrent-Guasp together with the networks of electrical excitation and blood supply.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.