In this paper, we study properties of solutions to doubly nonlinear reaction-diffusion systems with variable density and source. We demonstrate the possibilities of the self-similar approach to studying the qualitative properties of solutions of such reaction-diffusion systems. We also study the finite speed of propagation (FSP) properties of solutions, an asymptotic behavior of the compactly supported solutions and free boundary asymptotic solutions in quick diffusive and critical cases.
In this paper, we study the properties of self-similar solutions of a cross-diffusion parabolic system. In particular, we find the ZeldovichBarenblatt type solution to the cross diffusive system. The asymptotic behavior of self-similar solutions are analyzed for both the slow and fast diffusive regimes. It is shown that coefficients of the main term of the asymptotic of solution satisfy some system of nonlinear algebraic equations.
In this paper, the properties of solutions for the nonlinear system equations not in divergence form:, are studied. In this work, we used method of nonlinear splitting, known previously for nonlinear parabolic equations, and systems of equations in divergence form, asymptotic theory and asymptotic methods based on different transformations. Asymptotic representation of self-similar solutions for the nonlinear parabolic system of equations not in divergence form is constructed. The property of finite speed propagation of distributions (FSPD) and the asymptotic behavior of the weak solutions were studied for the slow diffusive case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.