Purpose. To establish mathematical models for the adaptation of materials under conditions of activation of a metastable structural-phase state of quasi-dissipative tribosystems. Determination and substantiation of factors for planning an active experiment due to which it is possible to create mathematical models of stable forecasts for increasing the wear resistance of materials. Research methods. When conducting the experiments, a priori data were used in combination with our own scientific developments of mathematical models of the dependences of the influence of the chemical composition of alloys during manual and automatic electric arc surfacing on the physical and mechanical properties of the surface layer of the material, which is destroyed under tribosystem conditions. It was decided to use mathematical planning of research on the basis of an active experiment with the creation of models for the numerical description of the mathematical expectation in the form of regression equations. Obtained results. On the basis of theoretical and practical scientific research with planning a passive and active experiment, a set of relevant knowledge has been obtained, which makes it possible to determine the main criterion requirements for the sensitivity of deposited steels and alloys to adaptation under the action of external mechanical and energy influences and allows to mathematically describe the characteristics of the alloy and provide a numerical estimate of the correlation parameters among themselves. On the basis of the theory of scientific mathematical planning of the experiment, a set of corresponding experiments was carried out, which made it possible to build spatial graphic models. Scientific novelty. For the first time, theoretical and practical scientific research is presented with the reproduction of a systemic multivariate analysis of the parameters of mathematical models and processes leading to the martensitic ( γ → α ) transformation and determines the substantiation of the chemical composition of the deposited materials to increase fracture resistance under conditions of quasi-dissipative and dissipative tribosystems. Practical meaning. The obtained results of the above studies allow, within the framework of technical and technological accuracy, which is necessary within the framework of practical engineering forecasts, to determine the physical and mechanical properties of wear-resistant deposited alloys under conditions of quasi-dissipative and dissipative tribosystems.
Purpose. The purpose of this study is to establish technological conditions and parameters for obtaining materials for improving the performance of machine parts under conditions of heavily loaded friction units due to quasi-tribosystems of gas thermal sprayed anti-friction layers. Research methods. Priori data were used in combination with our own scientific developments of the dependences of the influence of the chemical composition of gas thermal sprayed anti-friction layers on the physical and mechanical properties of the surface layer of the material, which is destroyed under tribosystem conditions. Results. On the basis of the theoretical and practical scientific research, a set of relevant knowledge has been obtained, which makes it possible to determine the main criteria requirements for obtaining anti-friction layers and graphically describe the characteristics of the alloy and show the correlations of the parameters with each other. The positive role of aluminum as a soft component of anti-friction pseudoalloys, which is well sprayed by thermal metallization at an affordable cost, has been experimentally confirmed. It has been proven that gas thermal coatings in the form of pseudoalloys, consisting of particles with different physical and mechanical properties of materials, can have up to 2–3 times higher wear resistance compared to single-component coatings from materials included in the composition. Scientific novelty. Theoretical and practical scientific research with the reproduction of system analysis to increase the resistance to destruction under the conditions of quasi-tribosystems of gas thermal sprayed antifriction layers is given. It is shown that in order to ensure a good running in of the contacting surfaces in the friction zone and particles of hard material with high wear resistance and resistance against sticking with the counterbody, anti-friction pseudoalloys of coatings should contain zones of material particles with lower hardness to comply with the Charpy principle. It has been determined that when spraying composite wires for application as a solid component of anti-friction coatings, it is possible to use particles of alloying elements that form intermetallic compounds or phase components of alloys with a high hardness during melting. A comparative analysis showed that two-component coatings deposited with composite wires are characterized by higher hardness and wear resistance under high contact pressures compared to coatings of the same composition deposited with different types of solid wires. Practical value. The obtained results allow, within the framework of technical and technological accuracy, which is necessary in the practical engineering forecasts, to determine the physical and mechanical properties of wear resistant gas thermal sprayed anti-friction layers under conditions of quasi-tribosystems. Thus, in comparison with cast antifriction materials of the same composition, anti-friction layers obtained by thermal metallization have a 1.5–1.8 times higher wear resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.