[1] This paper uses the plasma data from Cluster and TC-1 and geomagnetic data to study the geomagnetic signatures of the current wedge produced by fast-flow braking in the plasma sheet. The three fast flows studied here occurred in a very quiet background and were accompanied by no (or weak) particle injections, thus avoiding the influences from other disturbances. All the geomagnetic signatures of a substorm current wedge can be found in the geomagnetic signatures of a current system produced by the braking of fast flows, indicating that the fast flows can produce a complete current wedge which contains postmidnight downward and premidnight upward field-aligned currents, as well as a westward electrojet. The Pi2 precursors exist not only at high latitudes but also at midlatitudes. The starting times of midlatitude Pi2 precursors can be identified more precisely than those of high-latitude Pi2 precursors, providing a possible method to determine the starting time of fast flows in their source regions. The AL drop that a bursty bulk flow produces is proportional to its velocity and duration. In three cases, the AL drops are <100 nT. Because the AE increase of a typical substorm is >200 nT, whether a substorm can be triggered depends mainly on the conditions of the braking regions before fast flows. The observations of solar wind before the three fast flows suggest that it is difficult for the fast flows to trigger a substorm when the interplanetary magnetic field B z of solar wind is weakly southward.Citation: Cao, J. -B., et al. (2010), Geomagnetic signatures of current wedge produced by fast flows in a plasma sheet,
Abstract. We analyzed the spectral-polarized characteristics of Pc5 ULF waves observed on 17 September 2000 after the 03:20:25 UT substorm onset with the satellites GOES 8 and 10 located east and west of the onset location. In the course of the event, the wave polarization changed from mixed (between toroidal and poloidal) to poloidal, and then to mixed again. The hodogram of magnetic field oscillations rotated counterclockwise at GOES 8, and clockwise at GOES 10. It is suggested that the satellites detected the waves generated by the substorm injected clouds of the charged particles drifting in the magnetosphere in the opposite azimuthal directions: GOES 8 (located east of the substorm onset) detected the wave generated by an electron cloud, and GOES 10 (west of the onset) detected the wave generated by a positive ion cloud. This interpretation is confirmed by the energetic particles data recorded by LANL satellites.
We have carried out a comprehensive analysis of data from the high‐frequency coherent radar located near Yekaterinburg, ground‐based ionospheric, riometric, and magnetic stations, situated within the radar field of view and in the vicinity of it, as well as from eight radio paths crossing the Asian region of Russia. Using these data, we studied dynamics of ionospheric disturbances over wide longitudinal sector during the first 3 days of the St. Patrick's two‐step severe geomagnetic storm and determined the main mechanisms of their development. We showed that on 17 March during the main and early recovery storm phases, the major contribution to the generation of the ionospheric disturbances had been made by impact ionization by precipitating magnetospheric particles. This had lead to appearance of intense sporadic layers, alternating with intervals of total absorption. The main features of the storm were the large latitude width of the auroral precipitation zone and an expansion of this zone to corrected geomagnetic latitude ~ 45°. We suppose that these peculiarities were due to high variability of interplanetary magnetic field and solar wind impacted on the magnetosphere. The most probable cause of the negative ionospheric disturbance on 18 March might have been a change in the neutral atmosphere composition. Significant differences between measured and simulated values of maximal electron concentration in F2 layer point to the need to improve the existing empirical models of thermosphere, auroral precipitations, and magnetospheric convection in order to use them for modeling of ionospheric parameters during severe geomagnetic storms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.