TRANSFAC, TRRD (Transcription Regulatory Region Database) and COMPEL are databases which store information about transcriptional regulation in eukaryotic cells. The three databases provide distinct views on the components involved in transcription: transcription factors and their binding sites and binding profiles (TRANSFAC), the regulatory hierarchy of whole genes (TRRD), and the structural and functional properties of composite elements (COMPEL). The quantitative and qualitative changes of all three databases and connected programs are described. The databases are accessible via WWW:http://transfac.gbf.de/TRANSFAC orhttp://www.bionet.nsc.ru/TRRD
A method has been developed to detect pairs of positions with correlated mutations in protein multiple sequence alignments. The method is based on reconstruction of the phylogenetic tree for a set of sequences and statistical analysis of the distribution of mutations in the branches of the tree. The database of homology-derived protein structures (HSSP) is used as the source of multiple sequence alignments for proteins of known three-dimensional structure. We analyse pairs of positions with correlated mutations in 67 protein families and show quantitatively that the presence of such positions is a typical feature of protein families. A significant but weak tendency is observed for correlated residue pairs to be close in the three-dimensional structure. With further improvements, methods of this type may be useful for the prediction of residue--residue contacts and subsequent prediction of protein structure using distance geometry algorithms. In conclusion, we suggest a new experimental approach to protein structure determination in which selection of functional mutants after random mutagenesis and analysis of correlated mutations provide sufficient proximity constraints for calculation of the protein fold.
The use of biomedical SNP markers of diseases can improve effectiveness of treatment. Genotyping of patients with subsequent searching for SNPs more frequent than in norm is the only commonly accepted method for identification of SNP markers within the framework of translational research. The bioinformatics applications aimed at millions of unannotated SNPs of the “1000 Genomes” can make this search for SNP markers more focused and less expensive. We used our Web service involving Fisher's Z-score for candidate SNP markers to find a significant change in a gene's expression. Here we analyzed the change caused by SNPs in the gene's promoter via a change in affinity of the TATA-binding protein for this promoter. We provide examples and discuss how to use this bioinformatics application in the course of practical analysis of unannotated SNPs from the “1000 Genomes” project. Using known biomedical SNP markers, we identified 17 novel candidate SNP markers nearby: rs549858786 (rheumatoid arthritis); rs72661131 (cardiovascular events in rheumatoid arthritis); rs562962093 (stroke); rs563558831 (cyclophosphamide bioactivation); rs55878706 (malaria resistance, leukopenia), rs572527200 (asthma, systemic sclerosis, and psoriasis), rs371045754 (hemophilia B), rs587745372 (cardiovascular events); rs372329931, rs200209906, rs367732974, and rs549591993 (all four: cancer); rs17231520 and rs569033466 (both: atherosclerosis); rs63750953, rs281864525, and rs34166473 (all three: malaria resistance, thalassemia).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.