The following objectives were set out to study the effect of EEG α power increase training on the heart rate variability (HRV) as an index of the autonomic regulation of cognitive functions: (1) to establish the interrelation between a voluntary increase in the α power in the individual upper α band and the HRV and related characteristics of cognitive and emotional spheres; (2) to determine the nature of the relationship between the α activity indices and HRV depending on the resting α frequency EEG pattern; and (3) to study how the individual α frequency EEG pattern is reflected in the HRV changes as a result of biofeedback training. Psychometric indices of cognitive performance and the characteristics of EEG α activity and HRV were recorded in 27 healthy men 18-34 years of age before, during, and after ten training sessions of a voluntary increase in α power in the individual upper α band with the eyes closed. To determine the biofeedback effect in the α power increase training, the data of two groups were compared: the experimental, with a real biofeed back (14 subjects), and the control, with a sham biofeedback (13 subjects). The follow up effect of the train ing was assessed one month after its end. The results showed that α biofeedback training increased the resting α frequency, improved cognitive perfor mance, reduced psychoemotional stress, and increased HRV only in the subjects with a low baseline α fre quency. In the subjects with a high baseline resting α frequency, the α biofeedback training had no effect on the resting α power and cognitive performance but reduced the HRV (judging by the pNN 50 parameter). The positive correlation between the α peak frequency and HRV in subjects with initially low α frequency and the negative correlation in the subjects with a high baseline α frequency explains the opposite biofeedback effects on HRV in subjects with low and high α frequency. From the theoretical standpoint, the results of this study contribute to understanding the mechanisms of heart-brain neurovisceral relationships and their effect on the cognitive performance. From the applied standpoint, they suggest that EEG biofeedback can be used for improving autonomic regulation in healthy subjects and the development of individual approaches to the development of the biofeedback technology, which can be used both in clinical practice for treatment and rehabilitation of psychosomatic syndromes and in educational training.
Understanding the mechanisms of oxygen supply regulation, which involves the respiratory and cardiovascular systems, during human adaptation to intense physical activity, accompanied by hypoxemia, is important for the management of a training process. The objectives of this study were to investigate the cardiorespiratory coherence (CRC) changes in the low-frequency band in response to hypoxic exposure and to verify a dependence of these changes upon sports qualification level in athletes. Twenty male runners aged 17-25 years were exposed to acute normobaric hypoxia (10% O 2) for 10 min. Respiration, gas exchange, and heart rate were measured at baseline, during hypoxia, and after the exposure. To evaluate cardiorespiratory coupling, squared coherence was calculated based on 5-s averaged time series of heart and respiratory rhythms. Based on sports qualification level achieved over 4 years after the experimental testing, athletes were retrospectively divided into two groups, one high level (HLG, n = 10) and the other middle level (MLG, n = 10). No differences in anthropometric traits were observed between the groups. In the pooled group, acute hypoxia significantly increased CRC at frequencies 0.030-0.045 Hz and 0.075 Hz. In response to hypoxia, oxygen consumption decreased in HLG, and carbon dioxide production and ventilation increased in MLG. At 0.070-0.080 Hz frequencies in hypoxia, the CRC in HLG was higher than in MLG. Thus, highly qualified athletes enhance intersystem integration in response to hypoxia. This finding can be a physiological sign for the prognosis of qualification level in runners.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.