To adjust breeding programs for local, commercial, and fancy breeds, and to implement molecular (marker-assisted) breeding, a proper comprehension of phenotypic and genotypic variation is a sine qua non for breeding progress in animal production. Here, we investigated an evolutionary subdivision of domestic chickens based on their phenotypic and genotypic variability using a wide sample of 49 different breeds/populations. These represent a significant proportion of the global chicken gene pool and all major purposes of breed use (according to their traditional classification model), with many of them being characterized by a synthetic genetic structure and notable admixture. We assessed their phenotypic variability in terms of body weight, body measurements, and egg production. From this, we proposed a phenotypic clustering model (PCM) including six evolutionary lineages of breed formation: egg-type, meat-type, dual purpose (egg-meat and meat-egg), game, fancy, and Bantam. Estimation of genotypic variability was carried out using the analysis of five SNPs, i.e., at the level of genomic variation at the NCAPG-LCORL locus. Based on these data, two generally similar genotypic clustering models (GCM1 and GCM2) were inferred that also had several overlaps with PCM. Further research for SNPs associated with economically important traits can be instrumental in marker-assisted breeding programs.
The color of plumage in birds is an important feature, often determining descent to a particular species or breed. It serves as a key factor in the interaction of birds with each other due to their well-developed visual perception of the surrounding world. In poultry including chickens, the color of the plumage can be treated as a genetic marker, useful for identifying breeds, populations and breeding groups with their specific traits. The origin of diverse color plumage is the result of two interrelated physical processes, chemical and optical, due to which pigment and structural colors in the color are formed. The pigment melanin, which is presented in two forms, eumelanin and pheomelanin, is widely spread in birds. The basis for the formation of melanin is the aromatic amino acid tyrosine. The process of melano-genesis involves many loci, part of the complex expression of plumage color genes. In birds, the solid black color locus encodes the melanocortin 1 receptor (MC1R), mutations in which lead to a change in receptor activation and form different variants of the E locus. Using the GWAS analysis, possible genes affecting the formation of color in chickens were detected. The biosynthesis and types of melanin are affected by the activity of the enzyme tyrosine, and mutations in the tyrosinase gene (TYR) cause albinism in different species. The formation mechanism of brown, silver, gold, lavender and a number of other shades is determined by the influence on the work of the MC1R genes and TYR specific modifier genes. Thus, locus I currently associated with the PMEL17 gene inhibits the expression of eumelanin, and the MLPH gene affects tyrosinase function. Research on the mechanisms of formation of the secondary coloring of plumage in chickens is being actively conducted nowadays. The formation of a marble feather pattern is associated with the mutation of the endothelin B2 receptor (EDNRB2), in the coding part of the gene of which a polymorphism is found associated with the mo locus. The molecular base that causes the feather banding (locus B and autosomal recessive banding) is identified. Today, only some genes that determine the color of the plumage of chickens are studied and described. Different genes can produce similar plumage patterns, and different phenotypes can be determined by the polymorphism of a single gene. Using molecular methods, you can more accurately identify these differences. This overview shows the nature of melanin coloration in birds using the example of chickens of various breeds and also attempts to systematize knowledge about the molecular-genetic mechanisms of the appearance of various types of coloration.
Background The Russian White is a gene pool breed, registered in 1953 after crossing White Leghorns with local populations and, for 50 years, selected for cold tolerance and high egg production (EL). The breed has great potential in meeting demands of local food producers, commercial farmers and biotechnology sector of specific pathogen-free (SPF) eggs, the former valuing the breed for its egg weight (EW), EL, age at first egg (AFE), body weight (BW), and the latter for its yield of extraembryonic fluid (YEF) in 12.5-day embryos, ratio of extraembryonic fluid to egg weight, and embryo mass. Moreover, its cold tolerance has been presumably associated with day-old chick down colour (DOCDC) – white rather than yellow, the genetic basis of these traits being however poorly understood. Results We undertook genome-wide association studies (GWASs) for eight performance traits using single nucleotide polymorphism (SNP) genotyping of 146 birds and an Illumina 60KBeadChip. Several suggestive associations ( p < 5.16*10 − 5 ) were found for YEF, AFE, BW and EW. Moreover, on chromosome 2, an association with the white DOCDC was found where there is an linkage disequilibrium block of SNPs including genes that are responsible not for colour, but for immune resistance. Conclusions The obtained GWAS data can be used to explore the genetics of immunity and carry out selection for increasing YEF for SPF eggs production. Electronic supplementary material The online version of this article (10.1186/s12864-019-5605-5) contains supplementary material, which is available to authorized users.
A b s t r a c tA population of the Russian White chickens, bred at the gene pool farm of ARRIFAGB for 25 generations using individual selection, is characterized by resistance to a lowered temperature in the early postnatal period and white colour of the embryonic down. In 2002-2012, breeding was carried out by panmixia, and by now a new population of the Russian White chickens has been formed on the basis of the surviving stock. Comparison of the genetic variability of this population and the archival DNA of representatives of the 2001 population using microarray screening technology will help to assess the population structure and the preservation of the unique characteristics of its genome. The material for the study was DNA extracted from 162 chicken blood samples. Two groups of the Russian White breed were studied, the 2001 population and the current population. Genome-wide analysis using single nucleotide markers (SNP) included screening by means of the Illumina Chicken 60K SNP iSelect BeadChip microarray. Quality control of genotyping, determination of the population genetic structure by multidimensional scaling (MDS), calculation of linkage disequilibrium (LD) and allele frequency in the groups were carried out using PLINK 1.9 software program. The construction of a cluster delimitation model based on SNP genotypes was carried out using the ADMIXTURE program. According to the MDS analysis results, the current population can be divided into four MDS groups, which, when compared to the data of the pedigree, adequately reflect the origin of the studied individuals. The representatives of the ancestral population were genetically similar to the MDS3 group of the current population. Using the F-statistic of the twoway analysis of variance, a significant effect of the group, chromosome, chromosome in the group, and the distance between SNP markers on LD (r 2 ) values was observed. In the 2001 group, the maximum r 2 and the high incidence of LD equal to 1 were observed for all chromosomes, with a distance between SNP markers being 500-1000 Kb. There was also the greatest number of monomorphic alleles in this group. Based on the SNP analysis, we may conclude that the current Russian White chicken population is characterized by the disintegration of long LD regions of the ancestral population. Modelling clusters using the ADMIXTURE program revealed differences between the current population groups determined by MDS analysis. The groups composed of individuals included in MDS1 and MDS2 had a homogeneous structure and differed from each other at K = 4 and K = 5. The MDS4 group formed a genetically heterogeneous cluster different from the MDS1 and MDS2 groups at K of 2-5. The MDS3 group was phylogenetically close to the 2001 population (at K of 2-5). In general, the analysis of the current gene pool population of the Russian White chickens showed its heterogeneity while one of its groups (MDS3) was similar to the ancestral population of 2001, which in turn is characterized by a large number of monomorphic alleles and...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.