BackgroundDrosophila Merlin, the homolog of the human Neurofibromatosis 2 (NF2) gene, is important for the regulation of cell proliferation and receptor endocytosis. Male flies carrying a Mer3 allele, a missense mutation (Met177→Ile) in the Merlin gene, are viable but sterile; however, the cause of sterility is unknown.ResultsTestis examination reveals that hemizygous Mer3 mutant males have small seminal vesicles that contain only a few immotile sperm. By cytological and electron microscopy analyses of the Mer3, Mer4 (Gln170→stop), and control testes at various stages of spermatogenesis, we show that Merlin mutations affect meiotic cytokinesis of spermatocytes, cyst polarization and nuclear shaping during spermatid elongation, and spermatid individualization. We also demonstrate that the lethality and sterility phenotype of the Mer4 mutant is rescued by the introduction of a wild-type Merlin gene. Immunostaining demonstrates that the Merlin protein is redistributed to the area associated with the microtubules of the central spindle in telophase and its staining is less in the region of the contractile ring during meiotic cytokinesis. At the onion stage, Merlin is concentrated in the Nebenkern of spermatids, and this mitochondrial localization is maintained throughout sperm formation. Also, Merlin exhibits punctate staining in the acrosomal region of mature sperm.ConclusionMerlin mutations affect spermatogenesis at multiple stages. The Merlin protein is dynamically redistributed during meiosis of spermatocytes and is concentrated in the Nebenkern of spermatids. Our results demonstrated for the first time the mitochondrial localization of Merlin and suggest that Merlin may play a role in mitochondria formation and function during spermatogenesis.
Intraspecific hybrid dysgenesis (HD) appears after some strains of D. melanogaster are crossed. The predominant idea is that the movement of transposable P elements causes HD. It is believed that P elements appeared in the D. melanogaster genome in the middle of the last century by horizontal transfer, simultaneously with the appearance of HD determinants. A subsequent simultaneous expansion of HD determinants and P elements occurred. We analyzed the current distribution of HD determinants in natural populations of D. melanogaster and found no evidence of their further spread. However, full-sized P elements were identified in the genomes of all analyzed natural D. melanogaster strains independent of their cytotypes. Thus, the expansion of P elements does not correlate with the expansion of HD determinants. We found that the ovaries of dysgenic females did not contain germ cells despite the equal number of primordial germ cells in early stages in dysgenic and non-dysgenic embryos. We propose that HD does not result from DNA damage caused by P element transposition, but it would be the disruption in the regulation of dysgenic ovarian formation that causes the dysgenic phenotypes.
Gonadal atrophy is the most typical and dramatic manifestation of intraspecific hybrid dysgenesis syndrome leading to sterility in Drosophila melanogaster dysgenic progeny. The P-M system of hybrid dysgenesis is primarily associated with germ cell degeneration during the early stages of Drosophila embryonic development at elevated temperatures. In the present study, we have defined the phase of germ cell death as beginning at the end of embryogenesis immediately following gonad formation. However, the temperature-dependent screening of germ cell developmental patterns in the dysgenic background showed that early germ cells are susceptible to the hybrid dysgenesis at any Drosophila life-cycle stage, including in the imago. Electron microscopy of germ cells after dysgenesis induction revealed significant changes in subcellular structure, especially mitochondria, prior to cellular breakdown. The mitochondrial pathology can promote the activation of cell death pathways in dysgenic germ cells, which leads to gonadal atrophy.
The Drosophila Trithorax-like (Trl) gene encodes a GAGA factor which regulates a number of developmentally important genes. In this study, we identify a new function for Drosophila GAGA factor in male germ cell development. Trl mutants carrying strong hypomorphic alleles display loss of primordial germ cells during their migration in embryogenesis and severe disruption in mitochondria structure during early spermatogenesis. The mutation resulted in small testes formation, a deficit of germ cells, abnormal mitochondrial morphogenesis, spermatocyte death through autophagy, and partial or complete male sterility. Pleiotropic mutation effects can be explained by the misexpression of GAGA factor target genes, the products of which are required for germ cell progression into mature sperm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.