Composite films and aerogels of polyvinylpyrrolidone/cellulose nanocrystals (PVP/CNC) were prepared by solution casting and freeze-drying, respectively. Investigations into the PVP/CNC composite films and aerogels over a wide composition range were conducted. Thermal stability, morphology, and the resulting reinforcing effect on the PVP matrix were explored. FTIR, TGA, DSC, X-ray diffraction, SEM, and tensile testing were used to examine the properties of the composites. It was revealed PVP-assisted CNC self-assembly that produces uniform CNC aggregates with a high aspect ratio (length/width). A possible model of the PVP-assisted CNC self-assembly has been considered. Dispersibility of the composite aerogels in water and some organic solvents was studied. It was shown that dispersing the composite aerogels in water resulted in stable colloidal suspensions. CNC particles size in the redispersed aqueous suspensions was near similar to the CNC particles size in never-dried CNC aqueous suspensions.
In this work, cellulose nanocrystals (CNC) have been produced by hydrothermal method in a mixture of hydrochloric and nitric acids in molar ratios of 8:2, 7:3, 6:4 and 5:5. Hydrolysis of sulphate cellulose in the mixtures of nitric and hydrochloric acids was conducted in a sealed thick-walled stainless steel vessel with a teflon insert for 3 h at 110 °С. Properties of CNC have been characterized by applying different methods: elemental analysis, thermogravimetric analysis, IR spectroscopy, polarization optical microscopy, scanning electron microscopy, and dynamic light scattering. Yield of CNC, size and charge of the CNC particles, degree of polymerization, temperature of thermal destruction have been determined, and morphology of the CNC samples has been characterized. The highest CNC yield (32%) has been observed at a 7:3 ratio of nitric and hydrochloric acids. It has been established that the CNC particles are spherical and have an average size of 60-80 nm. An assumption has been made that presence of a strong oxidant (nitric acid) may cause hydrolysis of both amorphous and crystalline (in part) regions of cellulose, which affects the final shape of the CNC particles. It has been shown that the hydrolysis in a mixture of nitric and hydrochloric acids causes an oxidation of primary hydroxyl groups of the cellulose pyranose ring and formation of surface carboxyl groups. The CNC aqueous suspensions demonstrate high colloidal stability due to a rather high surface charge. It is noted that the CNC thermal stability is much higher than that of the CNC samples obtained by the standard sulfuric acid hydrolysis: the temperature of thermal destruction increases by 130-148 °С.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.