Поступила в редакцию 17 декабря 2018 Аннотация. Исследованы характеристики микроциркуляции крови в тканях человека посредством регистрации и анализа динамической спекл-картины. Предложены методические подходы для оценки полученных данных с целью верификации спекл-измерений с помощью широко используемой методики допплеровской флоуметрии. Ключевые слова: спекл-метрия, микроциркуляция крови, допплеровская флоуметрия.
Speckle fields are widely used in optical diagnostics of biotissues and evaluation of the functional state of bioobjects. The speckle field is formed by laser radiation scattered from the object under study. It bears information about the average dimensions of the scatterers, the degree of surface roughness makes it possible to judge the structural and biophysical characteristics of individual tissue cells (particles), on the one hand, and the integral optical characteristics of the entire biological tissue. The aim of the study was – the determination of connections between the biophysical and structural characteristics of the biotissue and the light fields inside the biotissues.The model developed of the medium gives a direct relationship between the optical and biophysical parameters of the biotissue. Calculations were carried out using known solutions of the radiation transfer equation, taking into account the multilayer structure of the tissue, multiple scattering in the medium, and multiple reflection of irradiation between the layers.With the increase wavelength, the size of speckles formed by the non-scattered component (direct light) of laser radiation increases by a factor of 2 from 400 to 800 μm in the stratum corneum and 5 times from 0.6 to 3 μm for the epidermis and from 0.27 to 1.4 μm to the dermis. Typical values of sizes of speckles formed by the diffraction component of laser radiation for the stratum corneum and epidermis range from 0.02 to 0.15 μm. For the dermis typical spot sizes are up to 0.03 μm. The speckle-spot size of the diffusion component in the dermis can vary from ±10 % at 400 nm and up to ±23 % for 800 nm when the volume concentration of blood capillaries changes. Characteristic dependencies are obtained and biophysical factors associated with the volume concentration of blood and the degree of it’s oxygenation that affect the contrast of the speckle structure in the dermis are discussed.The of speckles׳ size in the layers of tissue varies from a share of micrometer to millimeter. The established dependence makes it possible to determine the depth of penetration of light into the biotissue based on the dimensions of speckles. Calculation of the contrast of the speckle structure of scattered light in visible spectral range at different depths in the biotissue made it possible to establish the dependence of the contrast value of the interference pattern on the degree of oxygenation of the blood and the volume concentration of capillaries in the dermis.
Assessment of the parameters of skin microcirculation is an urgent and important task of modern medicine in the development of methods for diagnosing diseases of the nervous system. The system for assessing the functional state of blood flow in the skin surface layers in the wavelength range from 400 to 850 nm has been improved based on the use of an extended mathematical model of the propagation of optical radiation in human skin by taking into account additional parameters: optical anisotropy of the skin, diameter and shape of erythrocytes in the dermis layer, blood pressure in the brachial artery in the range from 90/60 to 195/130 mm·Hg, plasma protein concentration in the blood (α1, α2, β1, β2, γ-globulins and fibrinogen, g/l), rheological properties of blood flow with a diameter of blood vessels from 4.5 to 500 microns in the skin surface layers, skin temperature from +35 to +41 °C. The developed system makes it possible to determine the severity of microhemodynamic shifts in relation to metabolic disorders, improve diagnosis and evaluate the treatment efficacy of a number of neurological disorders; it also made it possible to reduce the patient examination time and increase the accuracy of measuring the blood flow microcirculation parameters by 10 % (linear and volumetric blood flow velocities) to detect blood flow disturbances in the surface layers of the skin in the normal and abnormal condition of the nervous system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.