Aims Phytosociological classification of fen vegetation (Scheuchzerio palustris‐Caricetea fuscae class) differs among European countries. Here we propose a unified vegetation classification of European fens at the alliance level, provide unequivocal assignment rules for individual vegetation plots, identify diagnostic species of fen alliances, and map their distribution. Location Europe, western Siberia and SE Greenland. Methods 29 049 vegetation‐plot records of fens were selected from databases using a list of specialist fen species. Formal definitions of alliances were created using the presence, absence and abundance of Cocktail‐based species groups and indicator species. DCA visualized the similarities among the alliances in an ordination space. The ISOPAM classification algorithm was applied to regional subsets with homogeneous plot size to check whether the classification based on formal definitions matches the results of unsupervised classifications. Results The following alliances were defined: Caricion viridulo‐trinervis (sub‐halophytic Atlantic dune‐slack fens), Caricion davallianae (temperate calcareous fens), Caricion atrofusco‐saxatilis (arcto‐alpine calcareous fens), Stygio‐Caricion limosae (boreal topogenic brown‐moss fens), Sphagno warnstorfii‐Tomentypnion nitentis (Sphagnum‐brown‐moss rich fens), Saxifrago‐Tomentypnion (continental to boreo‐continental nitrogen‐limited brown‐moss rich fens), Narthecion scardici (alpine fens with Balkan endemics), Caricion stantis (arctic brown‐moss rich fens), Anagallido tenellae‐Juncion bulbosi (Ibero‐Atlantic moderately rich fens), Drepanocladion exannulati (arcto‐boreal‐alpine non‐calcareous fens), Caricion fuscae (temperate moderately rich fens), Sphagno‐Caricion canescentis (poor fens) and Scheuchzerion palustris (dystrophic hollows). The main variation in the species composition of European fens reflected site chemistry (pH, mineral richness) and sorted the plots from calcareous and extremely rich fens, through rich and moderately rich fens, to poor fens and dystrophic hollows. ISOPAM classified regional subsets according to this gradient, supporting the ecological meaningfulness of this classification concept on both the regional and continental scale. Geographic/macroclimatic variation was reflected in the second most important gradient. Conclusions The pan‐European classification of fen vegetation was proposed and supported by the data for the first time. Formal definitions developed here allow consistent and unequivocal assignment of individual vegetation plots to fen alliances at the continental scale.
Improving diabetes outcomes will involve simplifying pathways to care and drugs, reassessing staff roles and insulin distribution systems. This would require better co-ordination of the inputs into the system and development of an integrated and patient-centred model.
Background: It is known that a range of nonbeverage alcohols including eau-de-colognes and medicinal tinctures are consumed by sections of the Russian population. Research conducted in a city in the Urals (2003Urals ( to 2005 showed that consumption of such products is associated with very high mortality from a wide range of causes. However, there have been no systematic attempts to investigate the extent to which such products are available in other cities of the Russian Federation. There is particular interest in establishing this following the introduction of new federal regulations in January 2006 aimed at restricting the availability of these products.Methods: In the first half of 2007, we conducted a survey in 17 cities that spanned the full range of city types in the Russian Federation excluding those in the Far East. In each city, fieldworkers visited pharmacies and other types of retail outlets and purchased samples of nonbeverage alcohols. These were defined as being typically 10 to 15 roubles per bottle, with an ethanol concentration of at least 60% by volume.Results: We were able to purchase samples of nonbeverage alcohols in each of the 17 cities we investigated. The majority of the 271 products included were a cheaper and more affordable source of ethanol than standard Russian vodka. Medicinal tinctures, sold almost exclusively in pharmacies, were particularly common with an average concentration of 78% ethanol by volume. Most importantly, the majority of the products were of a sort that our previous research in 2004 to 2005 had established were drunk by working-age men.Conclusions: While the 2006 federal regulations introduced in part to reduce the availability and consumption of nonbeverage alcohols may have had some effect on certain classes of nonmedicinal products, up until June 2007 at least, medicinal tinctures as well as some other nonbeverage alcohols that are consumed appear to have been readily available.
Aims: An Arctic Vegetation Classification (AVC) is needed to address issues related to rapid Arctic-wide changes to climate, land-use, and biodiversity. Location: The 7.1 million km 2 Arctic tundra biome. Approach and conclusions: The purpose, scope and conceptual framework for an Arctic Vegetation Archive (AVA) and Classification (AVC) were developed during numerous workshops starting in 1992. The AVA and AVC are modeled after the European vegetation archive (EVA) and classification (EVC). The AVA will use Turboveg for data management. The EVC will use a Braun-Blanquet (Br.-Bl.) classification approach. There are approximately 31,000 Arctic plots that could be included in the AVA. An Alaska AVA (AVA-AK, 24 datasets, 3026 plots) is a prototype for archives in other parts of the Arctic. The plan is to eventually merge data from other regions of the Arctic into a single Turboveg v3 database. We present the pros and cons of using the Br.-Bl. classification approach compared to the EcoVeg (US) and Biogeoclimatic Ecological Classification (Canada) approaches. The main advantages are that the Br.-Bl. approach already has been widely used in all regions of the Arctic, and many described, well-accepted vegetation classes have a pan-Arctic distribution. A crosswalk comparison of Dryas octopetala communities described according to the EcoVeg and the Braun-Blanquet approaches indicates that the non-parallel hierarchies of the two approaches make crosswalks difficult above the plantcommunity level. A preliminary Arctic prodromus contains a list of typical Arctic habitat types with associated described syntaxa from Europe, Greenland, western North America, and Alaska. Numerical clustering methods are used to provide an overview of the variability of habitat types across the range of datasets and to determine their relationship to previously described Braun-Blanquet syntaxa. We emphasize the need for continued maintenance of the Pan-Arctic Species List, and additional plot data to fully sample the variability across bioclimatic subzones, phytogeographic regions, and habitats in the Arctic. This will require standardized methods of plot-data collection, inclusion of physiogonomic information in the numeric analysis approaches to create formal definitions for vegetation units, and new methods of data sharing between the AVA and national vegetation-plot databases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.