Scanning force microscopy (SFM) was used for probing micromechanical properties of compliant polymeric materials. Classic models of elastic contacts, Sneddon's, Hertzian, and JKR, were tested for various indentation depths and for a variety of polymeric materials. We selected extremely compliant polyisoprene rubbers (Young's modulus, E ) 1-3 MPa), elastic polyurethanes (E ) 5-50 MPa), and hard surfaces of polystyrene (PS) and polyvinylchloride (PVC) (E ) 1-5 GPa). Both Sneddon's and Hertzian elastic models gave consistent and reliable results in the range of indentation depths up to 200 nm which are close to JKR solution. Close correlation is observed between absolute values of elastic moduli determined by SFM and known values for bulk materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.