The microstructure of gas silicate wastes is investigated. It is established, differences in particle size distribution affect rheology, abrasivity, abrasion resistance and material strength. The kinetics of polymerization of epoxy binders in the initial and filled samples is investigated: filler particles prevent the crosslinking of polymer molecules, breaking the bulk structure of the polymer matrix. As a result of research, the possibility of directional regulation of the physicomechanical properties of epoxy com-posites due to the introduction of dispersed fillers is shown, giving the binder complexes higher physi-comechanical properties, which expands the areas of their application in most industries. The theoret-ical justification is that the thermal parameters of the filler are much lower than the parameters of the main raw material. At the same time, the porosity of the filler material due to its own pores and heter-ogeneous materials formed during mixing gives the effect of thermal energy absorption, which ulti-mately leads to an increase in the thermal resistance of the samples and a slight decrease in the ther-mal conductivity coefficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.