We have considered the problem of dynamic propagation of the three-dimensional few-cycle optical pulses of Gaussian and super-Gaussian cross-section inside the Bragg medium with carbon nanotubes. The system has dissipation and additional energy “pumping”. We have shown that the pulse propagation is stable inside the considered environment. The special aspect of the pulse evolution of different cross-sections has been determined.
This article discusses the possibility of the fabrication of a highly sensitive sensor based on single-walled carbon nanotubes surface modified with functional amino groups (-NH2). The sensor potential for detection of alkali (sodium, lithium, and potassium) metals was investigated. The results of computer simulation of the interaction process between the sensor and an arbitrary surface of the modified tube containing atoms of the studied metals are presented. The calculations were carried out within the framework of the density functional theory (DFT) method using the molecular cluster model. It has been proved that surface-modified ammonium carbon nanotubes show high sensitivity for the metal atoms under study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.