All Russian mathematical portal K. Mayuzumi, N. Watanabe, I. V. Volovich, On construction of quantum logical gate based on ESR, A quantum computer is a computation device operated by means of quantum mechanical phenomena. There are many candidates that are being pursued for physically implementing the quantum computer. The quantum logical gate based on the electron spin resonance (ESR) was studied in ref. [3]. In this paper, we discuss a construction of Controlled-Controlled-NOT (CCNOT) gate by using the nonrelativistic formulation of ESR.
In 1989, Ohya propose a new concept, so-called Information Dynamics (ID), to investigate complex systems according to two kinds of view points. One is the dynamics of state change and another is measure of complexity. In ID, two complexities C S and T S are introduced. C S is a measure for complexity of system itself, and T S is a measure for dynamical change of states, which is called a transmitted complexity. An example of these complexities of ID is entropy for information transmission processes. The study of complexity is strongly related to the study of entropy theory for classical and quantum systems. The quantum entropy was introduced by von Neumann around 1932, which describes the amount of information of the quantum state itself. It was extended by Ohya for C*-systems before CNT entropy. The quantum relative entropy was first defined by Umegaki for σ-finite von Neumann algebras, which was extended by Araki and Uhlmann for general von Neumann algebras and *-algebras, respectively. By introducing a new notion, the so-called compound state, in 1983 Ohya succeeded to formulate the mutual entropy in a complete quantum mechanical system (i.e., input state, output state and channel are all quantum mechanical) describing the amount of information correctly transmitted through the quantum channel. In this paper, we briefly review the entropic complexities for classical and quantum systems. We introduce some complexities by means of entropy functionals in order to treat the transmission processes consistently. We apply the general frames of quantum communication to the Gaussian communication processes. Finally, we discuss about a construction of compound states including quantum correlations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.