Sensors used in rocket and space technology are subject to extreme external influences in terms of temperature, vibration, and shock. Therefore, the choice of the type of sensors is justified precisely by the resistance to such factors, as well as the ability to ensure the temporal and parametric stability of measurements. A new type of sensors – fiber-optic ones – meets these conditions. The basis for the selection and further improvement of such sensors were such requirements as minimum power consumption, high accuracy and stability of measurements, the ability to combine several measurements in one sensor. It is noted that for space infrastructure the factor of the possibility of simultaneous measurement of several parameters with one sensor is one of the important quality indicators. This is due to the possibility of reducing the number of sensors themselves, which reduces the mass and size parameters of space technology. This applies, first of all, to measurements of pressure and temperature, since they, in aggregate, account for at least 40 % of all measurements in space products. The path of choos-ing the types of methods and sensor designs led to the combination of the amplitude conversion method and optical communication in one sensor. In this case, amplitude modulation of pressure and temperature is carried out by a microelec-tromechanical unit (module), and the modulated optical signal is transmitted by an optical module. Such a modular composition of the sensor makes it possible to dispense with optical ana-lyzers (interrogators) and carry out further pro-cessing based on standard interfaces. A limitation of the proposed methods and designs is the need for microelectromechanical structures that measure certain physical quantities. Such structures for fiber-optic sensors are not mass-produced; therefore, their manufacture can be established at instrument-making enterprises with microelectronic equipment
In this research paper, the problem of studying the effectiveness of ozone in the process of water treatment was considered. In the course of the scientific work, a review of domestic and foreign literature was conducted; its advantages and disadvantages were considered. The research paper presented the theoretical and practical methods of water purification with ozone. The main factors influencing the efficiency of the technology in the process of water purification were also considered. It was established that as a technological method of water purification, the efficiency of the ozonation process includes not only the cost of electricity, but also the efficiency of its mixing, ozone dissolution in treated water. In addition, special attention is paid to the final stage of mixing the ozone-air mixture with treated water. From the results obtained, it can be seen that after primary ozonation, the concentrations of chromium, oxidation of permanganate, iron, petroleum products, metal ions and other pollutants significantly decreased. During further water purification, organic and inorganic pollutants are removed in the future (completely or up to the requirements of the standard). However, calcium, magnesium, sulfates, chlorides, pH value, alkalinity and hardness practically do not change. The water quality after primary ozonation according to bacteriological indicators met the requirements of the standard.
The pulsed elongation of fiber Bragg gratings is considered in order to be used to measure the displacement or deformation rate of objects. Optimal measurement modes were determined, numerical simulation of the output signal was performed during pulsed elongation or compression of the fiber grating, and the main patterns were analyzed. The results of the application of the Bragg gratings for the experimental determination of the deformation rate of materials under pulsed magnetic action are presented. Experimentally obtained and theoretical dependencies are compared. The dependencies of the change in the grating parameters—the coefficient and the half-width of the reflection spectrum with successive shortening of the grating—are given.
The objects of research are the designs and manufacturing technologies of a combined fiber-optic sensor. It is used in extreme operating conditions. The essence of the task is to study the constructive and technological compatibility of optical and micromechanical principles of simultaneous measurement of several heterogeneous physical quantities. In this regard, the chosen modular conversion principle solves the problem of combined conversion. The developed design and technology of the electro-adhesive connection make it possible to significantly reduce the internal mechanical stresses in the sensor and thereby increase the stability of the combined sensors in extreme operating conditions. Analytical models linking the magnitude and orientation of internal mechanical stresses with the characteristics of temporary stability for complex structures, as a rule, are absent. In practice, the obtained research results can be applied to combined pressure and temperature sensors, pressure and vibration, etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.