Comprehensive analysis of molecular pathology requires a collection of reference samples representing normal tissues from healthy donors. For the available limited collections of normal tissues from postmortal donors, there is a problem of data incompatibility, as different datasets generated using different experimental platforms often cannot be merged in a single panel. Here, we constructed and deposited the gene expression database of normal human tissues based on uniformly screened original sequencing data. In total, 142 solid tissue samples representing 20 organs were taken from post-mortal human healthy donors of different age killed in road accidents no later than 36 hours after death. Blood samples were taken from 17 healthy volunteers. We then compared them with the 758 transcriptomic profiles taken from the other databases. We found that overall 463 biosamples showed tissue-specific rather than platform- or database-specific clustering and could be aggregated in a single database termed
Oncobox Atlas of Normal Tissue Expression (ANTE)
. Our data will be useful to all those working with the analysis of human gene expression.
Using a systematic, whole-genome analysis of enhancer activity of human-specific endogenous retroviral inserts (hsERVs), we identified an element, hsERV PRODH , that acts as a tissue-specific enhancer for the PRODH gene, which is required for proper CNS functioning. PRODH is one of the candidate genes for susceptibility to schizophrenia and other neurological disorders. It codes for a proline dehydrogenase enzyme, which catalyses the first step of proline catabolism and most likely is involved in neuromediator synthesis in the CNS. We investigated the mechanisms that regulate hsERV PRODH enhancer activity. We showed that the hsERV PRODH enhancer and the internal CpG island of PRODH synergistically activate its promoter. The enhancer activity of hsERV PRODH is regulated by methylation, and in an undermethylated state it can up-regulate PRODH expression in the hippocampus. The mechanism of hsERV PRODH enhancer activity involves the binding of the transcription factor SOX2, whch is preferentially expressed in hippocampus. We propose that the interaction of hsERV PRODH and PRODH may have contributed to human CNS evolution.human-specific endogenous retrovirus | DNA methylation | central nervous system | human speciation | retroelement U nderstanding the molecular basis of phenotypic differences between humans and chimpanzees can provide important clues to human-specific behavioral peculiarities and neurological disorders. For this purpose we conducted a genome-wide analysis of human-specific endogenous retroviral (hsERV) inserts that may induce new regulatory pathways by acting as promoters and enhancers (1, 2). HsERVs of the HERV-K(HML-2) group are one of the four families of transposable elements that were able to transpose at the time of the radiation of human lineage from the lineage of its most closely related species, chimpanzee (3). At least 50% of all hsERV elements exhibit promoter activity in human tissues (4). We found only six hsERV inserts in the upstream regions of known human genes, close to transcription start sites. Three of them displayed strong enhancer activity in transient transfection experiments; of these three, only one-near the PRODH gene-matched the transcriptional activity pattern of its endogenous genomic copy. This copy of hsERV is a full-length, almost intact betaretrovirus belonging to the HERV-K(HML-2) group. PRODH encodes a mitochondrial enzyme proline, dehydrogenase (oxidase), that converts proline to D-1-pyrroline-5-carboxylate (5). PRODH regulates proline catabolism, which is vital for normal CNS functioning. Several PRODH mutations are associated with neuropsychiatric disorders, such as schizophrenia (6). Gene knockouts in mice cause severe changes in the executive functioning of the brain (7). Given the potential importance of PRODH in brain functioning and disease, we attempted to characterize its newly recognized hsERV PRODH enhancer. We showed that hsERV PRODH enhancer activity is regulated by methylation and that the hsERV PRODH enhancer and PRODH internal CpG island act syne...
High throughput technologies opened a new era in biomedicine by enabling massive analysis of gene expression at both RNA and protein levels. Unfortunately, expression data obtained in different experiments are often poorly compatible, even for the same biologic samples. Here, using experimental and bioinformatic investigation of major experimental platforms, we show that aggregation of gene expression data at the level of molecular pathways helps to diminish cross- and intra-platform bias otherwise clearly seen at the level of individual genes. We created a mathematical model of cumulative suppression of data variation that predicts the ideal parameters and the optimal size of a molecular pathway. We compared the abilities to aggregate experimental molecular data for the 5 alternative methods, also evaluated by their capacity to retain meaningful features of biologic samples. The bioinformatic method OncoFinder showed optimal performance in both tests and should be very useful for future cross-platform data analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.