Silica glass implanted with Zn ions of 60keV to 1.0×1017ions∕cm2 was annealed in oxygen gas to form ZnO nanoparticles (NPs). In as-implanted state, the implanted Zn atoms form Zn metallic NPs inside of the silica. After annealing at 600°C, ZnO NPs form on the surface, while Zn metallic NPs still remain in the deep region. At 700°C, most of Zn atoms move to the surface to form the droplet-shaped ZnO NPs which show two photoluminescence bands, i.e., an exciton band at 375nm and a defect band at ∼500nm. The defect band almost disappears in the samples annealed at 600°C, which include both ZnO NPs and Zn NPs.
The conversions of NiAs-type structures of transition metal chalcogenides (FeS and CoSe) to pyrite-type structures of dichalcogenides (FeS(2) and CoSe(2), respectively) under irradiation by HeNe laser (wavelength, 632.8 nm; intensity, 6 x 10(4) W/cm(2)) have been investigated using Raman spectroscopy. The laser-induced conversions give rise to Raman peaks corresponding to vibrations of S-S or Se-Se bonds of respective pyrite structures. The results are of interest for the characterization and fabrication of pyrite-like structures necessary for applications as oxygen reduction reaction catalysts. Material modifications at the micrometer and submicrometer levels are attainable. The structural conversions are accompanied by self-polymerization of excess chalcogen. Extended laser irradiation (>500 s) in air induces the substitution of chalcogen (S or Se) by oxygen in the chalcogenide materials and the subsequent formation of transition metal (Fe or Co) oxides. Excess chalcogen appears to prevent further oxidation. The article also presents conditions necessary to avoid laser-induced structural changes and oxidation of metal chalcogenide materials during Raman measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.