Radiographic or silver halide film is a well-established 2D dosimeter with an unquestioned spatial resolution. But its higher sensitivity to low-energy photons has to be taken into consideration. Metal compensators or physical modulators to deliver intensity modulated radiation therapy (IMRT) are known to change the beam energy spectrum and to produce scattered photons and contaminating electrons. Therefore the reliability of film dosimetry in compensator-based IMRT might be questioned. Conflicting data have been reported in the literature. This uncertainty about the validity of film dosimetry in compensator-based IMRT triggered us to conduct this study. First, the effect of MCP-96 compensators of varying thickness on the depth dose characteristics was investigated using a diamond detector which has a uniform energy response. A beam hardening effect was observed at 6 MV that resulted in a depth dose increase that remained below 2% at 20 cm depth. At 25 MV, in contrast, beam softening produced a dose decrease of up to 5% at the same depth. Second, dose was measured at depth using EDR2 film in perpendicular orientation to both 6 MV and 25 MV beams for different compensator thicknesses. A film dose underresponse of 1.1% was found for a 30 mm thick block in a 25 MV beam, which realized a transmission factor of 0.243. The effect induced by the compensators is higher than the experimental error but still within the accepted overall uncertainty of film dosimetry in clinical IMRT QA. With radiographic film as an affordable QA tool, the physical compensator remains a low threshold technique to deliver IMRT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.