The structure of multiscale convection in a thermally stratified plane horizontal fluid layer is investigated by means of numerical simulations. The thermal diffusivity is assumed to produce a thin boundary sublayer convectively much more unstable than the bulk of the layer. The simulated flow is a superposition of cellular structures with three different characteristic scales. In contrast to the largest convection cells, the smaller ones are localised in the upper portion of the layer. The smallest cells are advected by the largerscale convective flows. The simulated flow pattern qualitatively resembles that observed on the Sun.
The paper deals with the hexagonal convective flow near the stability threshold in an internally heated fluid layer. In our previous numerical study of convection near the stability threshold in a square box with internal heat generation [Phys. Lett. A 377, 2111 (2013)]PYLAAG0375-960110.1016/j.physleta.2013.06.013 for a region of large horizontal extent, it has been shown that at small values of Prandtl number (Pr), convection sets in as a pattern of hexagonal cells with upward motion in the center (up-hexagons), whereas at large Pr, a stable flow pattern is formed by hexagonal cells with a downward motion in the center (down-hexagons). Here, we study axisymmetric convection in a cylinder as a model of motion in a single hexagonal cell. The radius of the cylinder matches the size of hexagons observed in our three-dimensional simulation. The lateral boundary of the cylinder is free and heat insulated. Horizontal bounding surfaces are rigid. The upper boundary is maintained at a constant temperature; the lower one is insulated. Two stable, steady-state motions with the upward and downward flow at the cylinder axis have been attained in calculations, irrespective of Pr. Cylindrical motion with the same direction of circulation as in the stable hexagons has a maximum temperature drop measured along the radius at the bottom of the cell. We suggest maximization of the temperature drop as a selection criterion, which determines the preferred state of motion in an internally heated fluid layer. This new selection principle is validated by the comparative analysis of the dominant nonlinear effects in low- and high-Prandtl number convection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.