Multidisciplinary studies of zircons, rock-forming minerals and the whole-rock composition of granulite samples from the Bug Granulite–Gneiss Complex, Ukraine (including ion microprobe REE analysis, secondary ion mass spectrometry (SIMS) U–Pb and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) Lu–Hf analysis of zircons from a single sample) have revealed three major stages in the geological evolution of the complex. (i) At 3.66 Ga, a mafic intrusion contaminated with felsic rocks formed, as evidenced by 3.74 Ga zircon xenocrysts with inclusions of plagioclase, K-feldspar and quartz. (ii) At 3.59–3.55 Ga, high-temperature and high- to moderate-pressure granulite-facies metamorphism accompanied by migmatization and deformation resulted in the formation of mafic granulites. (iii) At 2.1–2.0 Ga, metamorphic overprinting occurred, and metatrachybasaltic dykes intruded at approximately 2.0 Ga. The metamorphic mineral assemblages recorded in the dykes formed at temperatures similar to those of the 3.59–3.55 Ga metamorphism but at pressures 2–3 kbar lower. This metamorphism disturbed the Sm–Nd whole-rock system, altered the Hf isotope system of the older zircons and resulted in Pb loss in small zircon grains. This complex event history recorded in zircons from a single rock corresponds to major stages of the geological evolution of both the Dniester–Bug Province and the entire Ukrainian Shield.
The article presents the results of studying the rocks of the pyroclastic facies of the Mriya lamproite pipe, located on the Priazovsky block of the Ukrainian shield. In them the rock's mineral composition includes a complex of exotic mineral particles formed under extreme reduction mantle conditions: silicate spherules, particles of native metals and intermetallic alloys, oxygen-free minerals such as diamond, qusongite (WC), and osbornite (TiN). The aim of the research is to establish the genesis of volcaniclastic rocks and to develop ideas of the highly deoxidized mantle mineral association (HRMMA), as well as to conduct an isotopic and geochemical study of zircon. As a result, groups of minerals from different sources are identified in the heavy fraction: HRMMA can be attributed to the juvenile magmatic component of volcaniclastic rocks; a group of minerals and xenoliths that can be interpreted as xenogenic random material associated with mantle nodules destruction (hornblendite, olivinite and dunite xenoliths), intrusive lamproites (tremolite-hornblende) and crystalline basement rocks (zircon, hornblende, epidote, and granitic xenoliths). The studied volcaniclastic rocks can be defined as intrusive pyroclastic facies (tuffisites) formed after the lamproites intrusion. Obviously, the HRMMA components formed under extreme reducing conditions at high temperatures, which are characteristic of the transition core-mantle zone. Thus, we believe that the formation of primary metal-silicate HRMMA melts is associated with the transition zone D".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.