Hypochlorous acid (HOCl) is produced in the human body by the family of mammalian heme peroxidases, mainly by myeloperoxidase, which is secreted by neutrophils and monocytes at sites of inflammation. This review discusses the reactions that occur between HOCl and the major classes of biologically important molecules (amino acids, proteins, nucleotides, nucleic acids, carbohydrates, lipids, and inorganic substances) to form free radicals. The generation of such free radical intermediates by HOCl and other reactive halogen species is accompanied by the development of halogenative stress, which causes a number of socially important diseases, such as cardiovascular, neurodegenerative, infectious, and other diseases usually associated with inflammatory response and characterized by the appearance of biomarkers of myeloperoxidase and halogenative stress. Investigations aimed at elucidating the mechanisms regulating the activity of enzyme systems that are responsible for the production of reactive halogen species are a crucial step in opening possibilities for control of the development of the body's inflammatory response.
Myeloperoxidase (MPO), an abundant enzyme in phagocytes, has been implicated in the pathogenesis of various inflammatory diseases including atherosclerosis. The major oxidant produced by MPO, hypochlorous acid (HOCl), is able to modify a great variety of biomolecules by chlorination and/or oxidation. In this paper the reactions of lipids (preferentially unsaturated fatty acids and cholesterol) with either reagent HOCl or HOCl generated by the MPO-hydrogen peroxide-chloride system are reviewed. One of the major issues has been whether the reaction of HOCl with lipids of low density lipoprotein (LDL) yields predominantly chlorohydrins or lipid hydroperoxides. Electrospray mass spectrometry provided direct evidence that chlorohydrins rather than peroxides are the major products of HOCl- or MPO-treated LDL phosphatidylcholines. Nevertheless lipid peroxidation is a possible alternative reaction of HOCl with polyunsaturated fatty acids if an additional radical source such as pre-formed lipid hydroperoxides is available. In phospholipids carrying a primary amino group such as phosphatidylethanolamine chloramines are the preferred products compared to chlorohydrins. Cholesterol can be converted by HOCl to great variety of oxysterols besides three isomers of chlorohydrins. For the situation in vivo it appears that the type of reaction occurring between HOCl and lipids would very much depend on the circumstances, e.g. the pH and the presence of radical initiators. The biological effects of lipid chlorohydrins are not yet well understood. It has been shown that chlorohydrins of both unsaturated fatty acids as well as of cholesterol may cause lysis of target cells, possibly by disruption of membrane structures.
Low-molecular-weight aldehydes (glyoxal, methylglyoxal, 3-deoxyglucosone) generated on autooxidation of glucose under conditions of carbonyl stress react much more actively with amino groups of L-lysine and epsilon-amino groups of lysine residues of apoprotein B-100 in human blood plasma low density lipoproteins (LDL) than their structural analogs (malonic dialdehyde (MDA), 4-hydroxynonenal) resulting on free radical oxidation of lipids under conditions of oxidative stress. Glyoxal-modified LDL aggregate in the incubation medium with a significantly higher rate than LDL modified by MDA, and MDA-modified LDL are markedly more poorly absorbed by cultured human macrophages and significantly more slowly eliminated from the rat bloodstream upon intravenous injection. Studies on kinetics of free radical oxidation of rat liver membrane phospholipids have shown that ubiquinol Q(10) is the most active lipid-soluble natural antioxidant, and suppression of ubiquinol Q(10) biosynthesis by beta-hydroxy-beta-methylglutaryl coenzyme A reductase inhibitors (statins) is accompanied by intensification of lipid peroxidation in rat liver biomembranes and in LDL of human blood plasma. Injection of ubiquinone Q(10) protects the human blood plasma LDL against oxidation and prevents oxidative stress-induced damages to rat myocardium. A unified molecular mechanism of atherogenic action of carbonyl-modified LDL in disorders of lipid and carbohydrate metabolism is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.