The genus Alternaria is a widely distributed major plant pathogen that can act as a saprophyte in plant debris. Fungi of this genus frequently infect cereal crops and cause such diseases as black point and wheat leaf blight, which decrease the yield and quality of cereal products. A total of 25 Alternaria sp. isolates were collected from germ grains of various wheat cultivars from different geographic regions in Kazakhstan. We investigated the genetic relationships of the main Alternaria species related to black point disease of wheat in Kazakhstan, using the inter-primer binding site (iPBS) DNA profiling technique. We used 25 retrotransposon-based iPBS primers to identify the differences among and within Alternaria species populations, and analyzed the variation using clustering (UPGMA) and statistical approaches (AMOVA). Isolates of Alternaria species clustered into two main genetic groups, with species of A.alternata and A.tennuissima forming one cluster, and isolates of A. infectoria forming another. The genetic diversity found using retrotransposon profiles was strongly correlated with geographic data. Overall, the iPBS fingerprinting technique is highly informative and useful for the evaluation of genetic diversity and relationships of Alternaria species.
Analysis of the genetic diversity of natural populations of threatened and endangered species of plants is a main aspect of conservation strategy. The endangered species Allium altaicum is a relict plant of the Ice Age and natural populations are located in extreme climatic conditions of Kazakstan’s Altai Mountains. Mobile genetic elements and other interspersed repeats are basic components of a eukaryote genome, which can activate under stress conditions and indirectly promote the survival of an organism against environmental stresses. Detections of chromosomal changes related to recombination processes of mobile genetic elements are performed by various PCR methods. These methods are based on interspersed repeat sequences and are an effective tool for research of biological diversity of plants and their variability. In our research, we used conservative sequences of tRNA primer binding sites (PBS) when initializing the retrotransposon replication as PCR primers to research the genetic diversity of 12 natural populations of A. altaicum found in various ecogeographic conditions of the Kazakhstani Altai. High efficiency of the PBS amplification method used was observed already at the intrapopulation level. Unique amplicons representative of a certain population were found at the intrapopulation level. Analysis of molecular dispersion revealed that the biodiversity of populations of mountainous and lowland A. altaicum is due to intrapopulation differences for climatic zones of habitation. This is likely conditional upon predominance of vegetative reproduction over seed reproduction in some populations. In the case of vegetative reproduction, somatic recombination related to the activity of mobile genetic elements are preserved in subsequent generations. This leads to an increase of intrapopulation genetic diversity. Thus, high genetic diversity was observed in populations such as A. altaicum located in the territory of the Kalbinskii Altai, whereas the minimum diversity was observed in the populations of the Leninororsk ecogeographic group. Distinctions between these populations were also identified depending on the areas of their distribution. Low-land and mid-mountain living environments are characterized by a great variety of shapes and plasticity. This work allowed us to obtain new genetic data on the structure of A. altaicum populations on the territory of the Kazakhstan Altai for the subsequent development of preservation and reproduction strategies for this relict species.
Endemic species are especially vulnerable to biodiversity loss caused by isolation or habitat specificity, small population size, and anthropogenic factors. Endemic species biodiversity analysis has a critically important global value for the development of conservation strategies. The rare onion Allium ledebourianum is a narrow-lined endemic species, with natural populations located in the extreme climatic conditions of the Kazakh Altai. A. ledebourianum populations are decreasing everywhere due to anthropogenic impact, and therefore, this species requires preservation and protection. Conservation of this rare species is associated with monitoring studies to investigate the genetic diversity of natural populations. Fundamental components of eukaryote genome include multiple classes of interspersed repeats. Various PCR-based DNA fingerprinting methods are used to detect chromosomal changes related to recombination processes of these interspersed elements. These methods are based on interspersed repeat sequences and are an effective approach for assessing the biological diversity of plants and their variability. We applied DNA profiling approaches based on conservative sequences of interspersed repeats to assess the genetic diversity of natural A. ledebourianum populations located in the territory of Kazakhstan Altai. The analysis of natural A. ledebourianum populations, carried out using the DNA profiling approach, allowed the effective differentiation of the populations and assessment of their genetic diversity. We used conservative sequences of tRNA primer binding sites (PBS) of the long-terminal repeat (LTR) retrotransposons as PCR primers. Amplification using the three most effective PBS primers generated 628 PCR amplicons, with an average of 209 amplicons. The average polymorphism level varied from 34% to 40% for all studied samples. Resolution analysis of the PBS primers showed all of them to have high or medium polymorphism levels, which varied from 0.763 to 0.965. Results of the molecular analysis of variance showed that the general biodiversity of A. ledebourianum populations is due to interpopulation (67%) and intrapopulation (33%) differences. The revealed genetic diversity was higher in the most distant population of A. ledebourianum LD64, located on the Sarymsakty ridge of Southern Altai. This is the first genetic diversity study of the endemic species A. ledebourianum using DNA profiling approaches. This work allowed us to collect new genetic data on the structure of A. ledebourianum populations in the Altai for subsequent development of preservation strategies to enhance the reproduction of this relict species. The results will be useful for the conservation and exploitation of this species, serving as the basis for further studies of its evolution and ecology.
КРИВОБОЧЕК Виталий Григорьевич, Пензенский научно-исследовательский институт сельского хозяйства СТАЦЕНКО Александр Петрович, Пензенский государственный университет ТРАЗАНОВА Екатерина Александровна, Пензенский государственный университет КУРЫШЕВ Иван Александрович, Пензенский государственный университет Представлены результаты оценки жароустойчивости различных сортов яровой пшеницы. В качестве критерия устойчивости предлагается использовать специальные коэффициенты, представляющие собой отношение концентрации аминокислоты пролина в листьях испыту-емых сортов яровой пшеницы к таковой у сорта-классификатора с известной (пониженной) жароустойчивостью. На их основании сделано заключение об относительной степени устой-чивости растений к высокой температуре. Высокий коэффициент соответствует повышен-ному уровню жароустойчивости растений.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.