It is known that, apart from the growth of instability modes, the non-modal (algebraic) mechanism of linear growth plays an important role in near-wall flows. In unbounded flows, including submerged jets, the theoretical analysis of the non-modal growth mechanism started only in the last decade; this mechanism has not yet been identified in experiments. In the present work, experiments were conducted on the excitation of a non-modal ‘lift-up’ growth mechanism. Special wavy structures (deflectors) were introduced into a laminar round submerged jet, which excited a roller-like transverse motion. Based on experimental results, we definitely identify the non-modal ‘lift-up’ growth mechanism of introduced disturbances. The development of perturbations in the experiment qualitatively corresponds to the theoretically calculated optimal perturbations. The features of the transition to turbulence caused by non-modal growth are considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.