Aims The aim of this study was to determine the frequency of heterozygous truncating ALPK3 variants (ALPK3tv) in patients with hypertrophic cardiomyopathy (HCM) and confirm their pathogenicity using burden testing in independent cohorts and family co-segregation studies. Methods and results In a discovery cohort of 770 index patients with HCM, 12 (1.56%) were heterozygous for ALPK3tv [odds ratio(OR) 16.01, 95% confidence interval (CI) 7.89–29.74, P < 8.36e−11] compared to the Genome Aggregation Database (gnomAD) population. In a validation cohort of 2047 HCM probands, 32 (1.56%) carried heterozygous ALPK3tv (OR 16.17, 95% CI 10.31–24.87, P < 2.2e−16, compared to gnomAD). Combined logarithm of odds score in seven families with ALPK3tv was 2.99. In comparison with a cohort of genotyped patients with HCM (n = 1679) with and without pathogenic sarcomere gene variants (SP+ and SP−), ALPK3tv carriers had a higher prevalence of apical/concentric patterns of hypertrophy (60%, P < 0.001) and of a short PR interval (10%, P = 0.009). Age at diagnosis and maximum left ventricular wall thickness were similar to SP− and left ventricular systolic impairment (6%) and non-sustained ventricular tachycardia (31%) at baseline similar to SP+. After 5.3 ± 5.7 years, 4 (9%) patients with ALPK3tv died of heart failure or had cardiac transplantation (log-rank P = 0.012 vs. SP− and P = 0.425 vs. SP+). Imaging and histopathology showed extensive myocardial fibrosis and myocyte vacuolation. Conclusions Heterozygous ALPK3tv are pathogenic and segregate with a characteristic HCM phenotype.
Hypertrophic cardiomyopathy (HCM) is the most common inherited myocardial disease with significant genetic and phenotypic heterogeneity. To search for novel biomarkers, which could increase the accuracy of HCM diagnosis and improve understanding of its phenotype formation, we analyzed the levels of circulating miRNAs—stable non-coding RNAs involved in post-transcriptional gene regulation. Performed high throughput sequencing of miRNAs in plasma of HCM patients and controls pinpointed miR-499a-5p as one of 35 miRNAs dysregulated in HCM. Further investigation on enlarged groups of individuals showed that its level was higher in carriers of pathogenic/likely pathogenic (P/LP) variants in MYH7 gene compared to controls (fold change, FC = 8.9; p < 0.0001). Just as important, carriers of variants in MYH7 gene were defined with higher miRNA levels than carriers of variants in the MYBPC3 gene (FC = 14.1; p = 0.0003) and other patients (FC = 4.1; p = 0.0008). The receiver operating characteristic analysis analysis showed the ability of miR-499a-5p to identify MYH7 variant carriers with the HCM phenotype with area under the curve value of 0.95 (95% confidence interval: 0.88–1.03, p = 0.0004); sensitivity and specificity were 0.86 and 0.91 (cut-off = 0.0014). Therefore, miR-499a-5p could serve as a circulating biomarker of HCM, caused by P/LP variants in MYH7 gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.