For highquality steel smelting, stagebystage production is required, which has a complex of metallurgical units capable for producing products with high performance properties and low content of harmful impurities. One of the harmful impurities is hydrogen, so it is important to limit its content in the metal. To ensure the specifed hydrogen content, the metal in the steel outoffurnace treatment at Converter Shop No. 2 (CS2) of PJSC “Novolipetsk Metallurgical Plant” (“NLMK”) is subjected to vacuum treatment in a circulating vacuum degasser. Despite the prevalence of circulating vacuum derassers, theoretically, mechanism of hydrogen removal in these metallurgical units has been insufciently studied. To increase efciency of hydrogen removal, theoretical calculations were performed to remove it from the metal. There are several mechanisms for hydrogen removing: direct transfer of hydrogen from metal to the surrounding space; formation of gas bubbles in metal and their direct ascent; nucleation of hydrogen bubbles at the border of refractory wall and metal; removal of hydrogen by metal blowing with neutral gas (argon). It is shown that the main ways of hydrogen removal in a circulating vacuum degasser are direct transfer of hydrogen from metal to the surrounding space and blowing of melt with transporting gas. In the CS2 of PJSC “NLMK”, both ways are implemented at a circulating vacuum degasser. Vacuum pumps provide pressure in a vacuum chamber of less than 101.3 Pa (0.001 atm.). It promotes intensive removal of hydrogen from the metal surface. To ensure circulation of metal, transporting gas argon is supplied to the inlet pipe of the RH degasser, which also takes part in removal of dissolved gases by transferring hydrogen to neutral gas bubbles. Additionally, performed calculations have shown that the main way of degassing in conditions of CS2 of PJSC “NLMK” is removal of hydrogen into the bubbles of carrier gas.
The actual problem of mineral resources depletion in ferrous metallurgy can be effectively solved by complex reuse of technogenic waste. That waste is mostly presented by EAF (electric arc furnace) slag and LF (ladle furnace) slag. These two kinds of slag have no complex full utilization. The residues of slag are going to the dump and then the slag dump locations pollute the environment. However, the residues of EAF and LF slag can be transformed into the valuable industrial product by interaction of the slag components. This work presents the research for joint wasteless processing of EAF and LF slag with production of Portland clinker and cast iron. The article describes disadvantages of known methods of each slag processing; the paper also shows the significance of LF slag utilization. Design and calculations of the research are presented as well as its experiment methodology. The final results show five chemical compositions for the mixtures, which allow the complex processing of this slag without any waste left. Such processing provides the production of cast iron and Portland clinker both meeting requirements of normative documents. The paper also describes the results of viscosity measurements of slag compositions, the obtained slag phases, and presents the final temperature conditions. The work also considers the results of industrial tests for the developed processing technology and a complete technological chain involving the use of tilt rotary furnaces.
The paper considers the effect of introducing ferroalloys containing titanium and zirconium on the structure and heat-resistance of low-carbon ferroalloys. Theoretically and experimentally, it has been proven that addition of 1.0 mass. % of titanium and 0.1 mass. % of zirconium to a low-carbon iron-aluminum melt containing 12 – 14 mass. % of aluminum, grinds its structure increasing temporary resistance and heat-melting. Titanium and zirconium are strong carbide-forming elements. When introduced into a low-carbon iron-aluminium alloy, they form a large number of crystallization centers, thus affecting its microstructure, allowing to get shredded and more equal grain compared to an alloy without additive. This in turn increases the strength limit of processed alloy. In addition, the use of titanium as a modifying additive in a low-carbon ferroalloy allows increasing its heatresistance, which exceeds several times the heat-resistance of famous chrome-nickel steel of 20Kh23N18 grade. As a result, a new technology for obtaining titanium and zirconium was developed based on research of the effect of their modifying additives on the structure and heat-resistance of low-carbon iron-aluminum alloys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.