This review aims to cover experimental data on oxidative effects of low-intensity radiofrequency radiation (RFR) in living cells. Analysis of the currently available peer-reviewed scientific literature reveals molecular effects induced by low-intensity RFR in living cells; this includes significant activation of key pathways generating reactive oxygen species (ROS), activation of peroxidation, oxidative damage of DNA and changes in the activity of antioxidant enzymes. It indicates that among 100 currently available peer-reviewed studies dealing with oxidative effects of low-intensity RFR, in general, 93 confirmed that RFR induces oxidative effects in biological systems. A wide pathogenic potential of the induced ROS and their involvement in cell signaling pathways explains a range of biological/health effects of low-intensity RFR, which include both cancer and non-cancer pathologies. In conclusion, our analysis demonstrates that low-intensity RFR is an expressive oxidative agent for living cells with a high pathogenic potential and that the oxidative stress induced by RFR exposure should be recognized as one of the primary mechanisms of the biological activity of this kind of radiation.
A wide range of non thermal biological effects of microwave radiation (MW) was revealed during the last decades. A number of reports showed evident hazardous effects of MW on embryo development in chicken. In this study, we aimed at elucidating the effects of MW emitted by a commercial model of GSM 900 MHz cell phone on embryo development in quails (Coturnix coturnix japonica) during both short and prolonged exposure. For that, fresh fertilized eggs were irradiated during the first 38 h or 14 days of incubation by a cell phone in "connecting" mode activated continuously through a computer system. Maximum intensity of incident radiation on the egg's surface was 0.2 μW/cm2.The irradiation led to a significant (p<0.001) increase in numbers of differentiated somites in 38-hour exposed embryos and to a significant (p<0.05) increase in total survival of embryos from exposed eggs after 14 days exposure. We hypothesized that observed facilitating effect was due to enhancement of metabolism in exposed embryos provoked via peroxidation mechanisms. Indeed, a level of thiobarbituric acid (TBA) reactive substances was significantly (p<0.05-0.001) higher in brains and livers of hatchlings from exposed embryos. Thus, observed effects of radiation from commercial GSM 900 MHz cell phone on developing quail embryos signify a possibility for non-thermal impact of MW on embryogenesis. We suggest that the facilitating effect of low doses of irradiation on embryo development can be explained by a hormesis effect induced by reactive oxygen species (ROS). Future studies need to be done to clarify this assumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.