The Probe Of Extreme Multi-Messenger Astrophysics (POEMMA) is designed to accurately observe ultra-high-energy cosmic rays (UHECRs) and cosmic neutrinos from space with sensitivity over the full celestial sky. POEMMA will observe the air fluorescence produced by extensive air showers (EASs) from UHECRs and potentially UHE neutrinos above 20 EeV. Additionally, POEMMA has the ability to observe the Cherenkov signal from upward-moving EASs induced by Earth-interacting tau neutrinos above 20 PeV. The POEMMA spacecraft are designed to quickly re-orientate to follow up transient neutrino sources and obtain currently unparalleled neutrino flux sensitivity. Developed as a NASA Astrophysics Probe-class mission, POEMMA consists of two identical satellites flying in loose formation in 525 km altitude orbits. Each POEMMA instrument incorporates a wide field-of-view (45∘) Schmidt telescope with an optical collecting area of over 6 m2. The hybrid focal surface of each telescope includes a fast (1 μs) near-ultraviolet camera for EAS fluorescence observations and an ultrafast (10 ns) optical camera for Cherenkov EAS observations. In a 5-year mission, POEMMA will provide measurements that open new multi-messenger windows onto the most energetic events in the universe, enabling the study of new astrophysics and particle physics at these extreme energies.
We evaluate the exposure during nadir observations with JEM-EUSO, the Extreme Universe Space Obser-\ud vatory, on-board the Japanese Experiment Module of the International Space Station. Designed as a mis-\ud sion to explore the extreme energy Universe from space, JEM-EUSO will monitor the Earth’s nighttime\ud atmosphere to record the ultraviolet light from tracks generated by extensive air showers initiated by\ud ultra-high energy cosmic rays. In the present work, we discuss the particularities of space-based obser-\ud vation and we compute the annual exposure in nadir observation. The results are based on studies of the\ud expected trigger aperture and observational duty cycle, as well as, on the investigations of the effects of\ud clouds and different types of background light. We show that the annual exposure is about one order of\ud magnitude higher than those of the presently operating ground-based observatories
The origin and nature of extreme energy cosmic rays (EECRs), which have energies above the 5 · 10 19 eV, the Greisen-Zatsepin-Kuzmin (GZK) energy limit, is one of the most interesting and complicated problems in modern cosmic-ray physics. Existing ground-based detectors have helped to obtain remarkable results in studying cosmic rays before and after the GZK limit, but have also produced some contradictions in our understanding of cosmic ray mass composition. Moreover, each of these detectors covers only a part of the celestial sphere, which poses problems for studying the arrival directions of EECRs and identifying their sources. As a new generation of EECR space detectors, TUS (Tracking Ultraviolet Set-up), KLYPVE and JEM-EUSO, are intended to study the most energetic cosmic-ray particles, providing larger, uniform exposures of the entire celestial sphere. The TUS detector, launched on board the Lomonosov satellite on April 28, 2016, from Vostochny Cosmodrome in Russia, is the first of these. It employs a single-mirror optical system and a photomultiplier tube matrix as a photodetector and will test the fluorescent method of measuring EECRs from space. Utilizing the Earth's atmosphere as a huge calorimeter, it is expected to detect EECRs with energies above 10 20 eV. It will also be able to register slower atmospheric transient events: atmospheric fluorescence in electrical discharges of various types including precipitating electrons escaping the magnetosphere and from the radiation of meteors passing through the atmosphere. We describe the design of the TUS detector and present results of different ground-based tests and simulations.
[1] Light detectors sensitive to wavelength ranges 240-400 nm and beyond 610 nm (which we refer to, for simplicity, as the UV and Red bands) on board UniversitetskyTatiana-2 satellite have detected transient flashes in the atmosphere of duration 1-128 ms. Measured ratio of the number of Red photons to the number of UV photons indicates that source of transient radiation is at high atmosphere altitude (>50 km). Distribution of events with various photon numbers Q a in the atmosphere found to be different for "luminous" events Q a = 10 23 -10 26 (with exponent of differential distribution -2.2) and for "faint" events Q a = 10 21 -10 23 (with exponent À 0.97). Luminous event parameters (atmosphere altitude, energy released to radiation, and temporal profiles) are similar to observed elsewhere parameters of transient luminous events (TLE) of elves, sprites, halo, and gigantic blue jets types. Global map of luminous events demonstrates concentration to equatorial zones (latitudes 30 N to 30 S) above continents. Faint events (with number of photons Q a = 10 20 -5Á 10 21 ) are distributed more uniformly over latitudes and longitudes. Phenomenon of series of transients registered every minute along satellite orbit (from 3 to 16 transients in one series) was observed. Most TLE-type events belonged to series. Single transients are in average fainter than serial ones. Some transients belonging to series occurs far away of thunderstorm regions. Origin of faint single transients is not clear; several hypothetical models of their production are discussed.Citation: Garipov, G. K. et al. (2013), Global transients in ultraviolet and red-infrared ranges from data of Universitetsky-Tatiana-2 satellite,
Mini-EUSO is a telescope observing the Earth in the ultraviolet band from the International Space Station. It is a part of the JEM-EUSO program, paving the way to future larger missions, such as K-EUSO and POEMMA, devoted primarily to the observation of ultrahigh-energy cosmic rays from space. Mini-EUSO is capable of observing extensive air showers generated by ultrahigh-energy cosmic rays with an energy above 1021 eV and to detect artificial showers generated with lasers from the ground. Other main scientific objectives of the mission are the search for nuclearites and strange quark matter, the study of atmospheric phenomena such as transient luminous events, meteors, and meteoroids, the observation of sea bioluminescence and of artificial satellites and man-made space debris. Mini-EUSO will map the nighttime Earth in the UV range (290–430 nm), with a spatial resolution of about 6.3 km and a temporal resolution of 2.5 μs, through a nadir-facing UV-transparent window in the Russian Zvezda module. The instrument, launched on 2019 August 22, from the Baikonur Cosmodrome, is based on an optical system employing two Fresnel lenses and a focal surface composed of 36 multianode photomultiplier tubes, 64 channels each, for a total of 2304 channels with single-photon counting sensitivity and an overall field of view of 44°. Mini-EUSO also contains two ancillary cameras to complement measurements in the near-infrared and visible ranges. In this paper, we describe the detector and present the various phenomena observed in the first months of operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.