For the first time, the values of the atomic particle-solid body potential were obtained from experimental data on the energy spectra and angular dependences of backscattered particles. The proposed procedure for determining the potential has not previously been applied. It is shown that the obtained data do not depend on the potential approximation used. The interaction potential between an ion and a solid differs markedly from the potential describing collisions in the gas phase. The screening constant increases by 10-15%. The increase in screening is due to an increase in the density of the electron gas in the region between the incident particle and the scattering center.
An overview of results concerning simulation of various processes which occur due to atomic bombardment of crystalline and amorphous solids is presented. With the use of original computational codes, the following data were obtained: reflection coefficients, projected energy losses and ranges of ions in solids, channeling data as well as sputtering yield and its dependence on incident angle of bombarding particles for Be-W and Ne-W combinations. Be, C and W targets were studied as these are among the plasma-facing materials in tokamaks, including ITER. The emphasis was made on atom-target combinations which lack reliable experimental data. Experimental data on other materials were used to verify calculations. A significant influence of the interaction potential used on the simulation results is shown. The reviewed results are tied by a common subject – a study of interaction of plasma ions and first-wall materials of a tokamak-reactor – and also by a common method of study – the use of an original computational code.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.