Рассмотрены репараметризационно-инвариантные лагранжевы системы с высшими производными. Описаны геометрические структуры, появляющиеся в этих теориях, и построен геометрический гамильтонов формализм. Приведена формула преобразования Лежандра для таких систем, которая отличается от обычной. Показано, что фазовое расслоение, т.е. образ преобразования Лежандра, являющееся подмногообразием некоторого кокасательного расслоения, всегда в данной конструкции нечетномерно. Вследствие этого канонически определенная симплектическая 2-форма из объемлющего кокасательного расслоения порождает на фазовом расслоении поле направлений, состоящее из векторов, на которых обращается в нуль ее ограничение. Доказано, что интегральные линии данного поля проецируются на экстремали действия на конфигурационном многообразии. Вышесказанное означает, что полученное поле является гамильтоновым полем. Обнаружено, что соответствующие уравнения Гамильтона записываются через обобщенную скобку Намбу. Ключевые слова: гамильтонов формализм, касательное расслоение высшего порядка, скобка Намбу, репараметризационная инвариантность.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.