For the first time first-principles calculations were performed to get the dependences of strain energy and band gap of achiral nanotubes obtained by rolling up monolayers of gallium (II) sulfide and selenide. The hybrid density functional method (with 13% of the Hartree-Fock exchange) within the CRYSTAL17 computer code was used. The empirical Grimme correction was applied to describe the dispersion interactions between layers accurately. As a result of simulations of nanotubes with different chirality and different diameters, the minimum diameters of the stable single-walled nanotubes were determined, which retain the continuity of the chemical bonds on the outer nanotube surface. It was shown that the strain energy dependence on a diameter obeys a classical law of inverse squares and is the same for «zigzag» and «armchair» nanotubes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.